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GLOSSARY 

CO coconut oil 

SO safflower oil 

loco 10% of kcal as coconut oil 

40CO 40% of kcal as coconut oil 

40CC 39% of kcal as coconut oil, 0.5% by weight as 
cholesterol 

40SO 40% of kcal as safflower oil 

40SC 39% of kcal as safflower oil, 0.5% by weight as 
cholesterol 

FFA free fatty acids 

TG triglycerides 

ACX acetyl-CoA carboxylase 

ACX:ACT acetyl-CoA carboxylase activity, nmoles HCO^-fixed/mg 
soluble protein/min 

FAS fatty acid synthetase 

FASrACT fatty acid synthetase activity, nmoles fatty acids 
formed/mg soluble protein/min 

HMG-CoA 3-hydroxy-3-methyIglutary 1-CoA reductase 

HMG:ACT HMG-CoA reductase activity, pmoles mevalonate 
formed/mg microsomal protein/min 

C7a cholesterol 7a-hydroxylase 

C7a:ACT cholesterol 7a-hydroxylase activity, pmoles 
7a-hydroxycholesterol formed/mg microsomal protein/min 

SEM standard error of the mean 

MDV mean daily values, average of values taken at 6 hour 
intervals over 24 hours (experiments 1 and 3) 

MCV mean combined values, average of values taken at 
12 hour intervals over 24 hours (experiment 2) 
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INTRODUCTION 

Cardiovascular disease (CVD) is recognized as a major 

public health problem in the United States. A multiplicity 

of factors has been associated with the development of CVD 

including hyperlipidemias, both hypercholesterolemia and 

hypertriglyceridemia. In some people serum cholesterol and 

triglyceride levels may be reduced by dietary manipulation 

including decreased caloric intake from fat, reduced choles­

terol intake and the substitution of polyunsaturated for 

saturated fats. These results indicate that to understand 

the relationship between hyperlipidemias and CVD/ it is 

necessary to understand the effect of dietary fat and choles­

terol on the metabolic pathways of lipogenesis, cholestero-

genesis and cholesterol degradation. 

Important in the functioning of each of these pathways 

are regulatory, or rate limiting, enzymes. The de novo 

synthesis of long chain fatty acids from acetyl-coenzyme A 

(acetyl-CoA) is catalyzed by two enzyme systems acting 

sequentially. The enzymes, considered to be short or long 

term regulators of lipogenesis, are acetyl-coenzyme A 

carboxylase (ACX, EC 6.4.1.2) and fatty acid synthetase (FAS), 

respectively. The regulatory step in cholesterol synthesis 

is controlled by 3-hydroxy-3-methylglutaryl-c:oenzyme A 

reductase (EC 1.1.1.34; HMG-CoA reductase). The rate of 
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cholesterol catabolism which involves formation of primary 

bile acids is controlled at the step regulated by cholesterol 

7a-hydroxylase (EC 1.14). 

Each of these enzymes has been investigated in detail 

by biochemical and biophysical techniques. Changes in the 

activity of the enzymes are caused by a variety of factors; 

nutritional, hormonal, developmental, genetic, neoplastic and 

pharmacologic. These factors act by changing the catalytic 

efficiency of the enzyme or changing enzyme protein con­

centration via synthetic or degradative processes. 

Ten years ago it was recognized that in rats the activity 

of hepatic HMG-CoA reductase (Back et al., 1969) and choles­

terol 7a-hydroxylase (Gielen et al., 1969) as well as 

cholesterol synthesis vary significantly during a 24 

hour period divided into 12 hour photoperiods of light 

and dark. This was recognized as circadian or diurnal 

rhythm because enzyme activity varied about a mean with a 

period of approximately 24 hours. 

Biological periodicity has been demonstrated in virtually 

all plant and animal species (Black and Axelrod, 1970). 

Biorhythms serve to synchronize activities of a species with 

the periodically varying environment as well as to synchro­

nize individuals of a species with each other, of obvious 

survival value. Biological rhythms may be endogenous, or 

due to environmental cues, such as lighting, temperature. 
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or feeding, the "Zeitgeber" factors. The endogenous rhythms 

in vertebrates, such as the circadian variation in urinary 

and plasma corticoids, appear to be regulated by the central 

nervous system through mediation of the cyclic secretion 

of adrenocorticotropic hormone, ACTH, by the pituitary. 

The circadian rhythm in some hepatic enzymes that oxidize 

drugs seems to be dependent on the daily corticoid rhythm 

ultimately controlled by hypothalamic factors. 

The metabolic pathways synthesizing fatty acids or 

cholesterol are dependent on a supply of acetyl-CoA produced 

by catabolic cellular processes including B-oxidation of 

fatty acids, glycolysis of simple sugars and degradation of 

certain amino acids. Once produced, acetyl-CoA can be 

utilized in the citric acid cycle with subsequent production 

of CO2 and H2O or act as a substrate during the synthesis 

of long chain fatty acids, cholesterol or ketone bodies 

(Figure 1). 

Regulation of the dispersal of acetyl-CoA along various 

catabolic and anabolic routes is not completely understood. 

Identification of synchrony or asynchrony among metabolic 

parameters related to fatty acid and cholesterol synthesis 

would yield insight into the control of these processes. 

Therefore, one of the objectives of this study was to deter­

mine whether the activities of ACX and FAS vary diurnally and 
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Some amino acids 

Fatty acids Pyruvate 

Acetyl-CoA 

Citrate 
Malonyl-CoA 

CO, 

Fatty acids Acetoacetyl-CoA 

3-Hydroxy-3-methyglutaryl-CoA 

Ketone bodies 

Mevalonic acid 

I 
Cholesterol 

4 

^ r 

Bile acids 

1. Acetyl-CoA carboxylase 
2. Fatty acid synthetase 
3. HMG-CoA reductase 
4. Cholesterol 7a-hydroxylase 

Figure 1. Pathway enzymes examined in this study that 
affect the utilization of acetyl-CoA 
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whether the activities of enzymes controlling lipogenesis, 

cholesterogenesis and cholesterol degradation are in or 

out of phase in utilizing acetyl-CoA. 

The diurnal changes in selected serum and hepatic lipid 

levels were also measured to determine whether these lipid 

levels are correlated with enzyme activity and could, 

thereby, be controllers of that activity. Dietary manipula­

tions were carried out so that the effects of fat saturation, 

the percent of calories from fat and the addition of exo­

genous cholesterol on the activity of ACX, FAS, HMG-CoA 

reductase and cholesterol 7a-hydroxylase and on concentra­

tion of tissue lipids could be determined. 
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REVIEW OF LITERATURE 

Among the key enzymes of mammalian lipid metabolism are; 

1) acetyl-coenzyme A carboxylase (ACX, EC 6.4.1.2) which 

catalyzes the biotin and ATP dependent carboxylation of acetyl-

coenzyme A to produce malonyl-coenzyme A; 2) fatty acid 

synthetase (FAS) which catalyzes the synthesis of long 

chain fatty acids, primarily palmitic acid, from malonyl-

CoA; 3) 3-hydroxy-3-methyIglutary1-coenzyme A reductase 

(EC 1.1.1.34) necessary for the reductive deacylation of 3-

hydroxy-3-methyIglutary1-coenzyme A, a regulatory step in the 

formation of cholesterol; 4) cholesterol 7a-hydroxylase 

(EC 1.14) which controls the rate of formation of the first 

intermediate in the synthesis of primary bile acids from 

cholesterol. 

The importance and complexity of the roles which these 

four enzymes play in lipid metabolism is reflected by the 

frequency with which they are discussed in the current litera­

ture. In a review of mammalian lipid metabolism. Van Golde and 

Van den Bergh (1977) discussed regulation of each of these enzymes 

in liver. Block and Vance (1977) and Volpe and Vagelos (1973) 

reviewed the enzymatic processes of fatty acid biosynthesis. 

Rodwell et al. (1976) and Dugan and Porter (1977) discussed 

regulation of HMG-CoA reductase activity by metabolic and 

hormonal effects. Myant and Mitropoulous (1977) dealt with 
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cholesterol 7a-hydroxylase and its effectors. Romsos and 

Leveille (1974) have reviewed the effects of diet on activity 

of enzymes involved in fatty acid and cholesterol synthesis. 

This review will integrate information from the sources 

just cited with more recent publications to present an over­

view of hepatic lipid metabolism with emphasis on the regu­

latory enzymes and their effectors. A brief section on serum 

lipoproteins has been included. Unless noted, the data 

reviewed have been obtained from studies with rats. 

Regulation of the Activity of 
Acetyl-CoA Carboxylase and 

Fatty Acid Synthetase 

The de novo synthesis of long chain fatty acids is 

catalyzed by cytosolic enzymes including acetyl-CoA carboxy­

lase (ACX) and fatty acid synthetase (FAS). These enzymes 

function sequentially and usually in a coordinated manner, 

although ACX has been generally considered rate limiting 

(Gangaly, 1960). 

Acetyl-CoA carboxylase has equilibrium forms, an 

active polymer and an inactive protomer. The polymeric 

form is favored by the presence of di- and tricarboxylic 

acids, especially citrate, acetyl-CoA, high protein concen­

trations and pH 6.5 to 7.0. The protomer is favored by low 
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protein concentrations, chloride ions, and acyl-CoA deriv­

atives (Gregolin et al., 1968). When hepatic ACX was puri­

fied to homogeneity, the polymeric form was estimated to 

have a molecular weight of 4,000,000 to 8,000,000 da1tons 

while the protomeric molecular weight was estimated to be 

200,000 daltons. The protomer was further resolved into two 

subunits (Inoue and Lowenstein, 1972). However, Mackall and 

Lane (1977) have questioned the existence of protomeric sub-

units by showing that these "subunits" were proteolytic 

fragments, artifacts of the isolation procedures. 

When viewed by electron microscopy, inactive protomer 

appears as particles with maximum dimensions of 100-300 Â 

while the active polymer appears as a network of filaments 

70-100 Â in width and up to 4000 A in length. Kleinschmidt 

and coworkers (1969) speculated that the network of fila­

ments might provide a matrix for organization of other 

enzymes involved in fatty acid biosynthesis. 

Hepatic FAS, purified to homogeneity, is a tightly 

associated multienzyme complex with a reported molecular 

weight of 540,000 daltons (Burton et al., 1968). So 

far, fatty acid synthetase complexes from animals or 

yeast have not been dissociated into individual active 

enzymatic subunits although seven separate peptides and 

their functions have been described as components of FAS 
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from E. coll. 

Short term regulation of lipogenesis 

The rate of fatty acid synthesis can change quickly in 

response to several factors. For example, synthesis de­

creases rapidly when animals are fasted and increases rapidly 

and significantly when fasted animals are refed a fat-free 

diet (Nishikari et al., 1973). Changes in catalytic effi­

ciency of existing enzyme play an important role when the rate 

of fatty acid synthesis is adjusted rapidly. Therefore, 

over the short term, enzyme activity may be regulated by 

allosteric effectors which bind to the enzyme to increase 

or decrease its efficiency or by covalent modification 

of the enzyme by phosphory1ation-dephosphorylation. 

Citrate, long chain acyl-CoA compounds and free fatty 

acids are among the allosteric regulators considered to be 

of potential physiological importance in the short term regu­

lation of lipogenesis. For example, changes in hepatic 

citrate and long chain acyl-CoA thioester levels as well 

as ACX activity were followed after rats were fasted and 

refed (Nishikari et al., 1973). Following realimentation, 

the rate of fatty acid synthesis rose steadily for eight hours. 

However, the amount of enzyme protein did not change. Citrate 

content increased during this time while long chain acyl-

CoA content decreased sharply. The data reflect a change in 
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catalytic efficiency due to changes in metabolite rather 

than enzyme concentrations during the initial period of re-

feeding. 

In a similar study by Goodridge (1973) the citrate 

content in isolated hepatocytes from refed chicks was 

positively correlated with fatty acid synthesis under all 

incubation conditions. Fatty acid synthesis was, however, 

inhibited by free fatty acids and this inhibition was ac­

companied by an increase in the fatty acyl-CoA level. It 

is possible that citrate activated ACX while fatty acyl-CoA 

derivatives acted either to inhibit ACX directly or to in­

hibit mitochondrial citrate carrier. In either case the 

net result would be a reduction in the activation of ACX 

by citrate. 

There are other reports in the literature which indi­

cate that fatty acid synthesis may not be directly regulated 

by tissue citrate levels. Jacobs and Majerus (1973) working 

with skin fibroblasts showed that addition of albumin-bound 

fatty acids to fibroblasts resulted in a 26-67% inhibi­

tion in the rate of acetate incorporation into fatty acids. 

At the same time levels of long chain acyl-CoA derivatives 

and of citrate remained constant. The authors speculated 

that the uptake of free fatty acids resulted in a shift 

of citrate from cytoplasm to the mitochondria, accompanied 
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by a translocation of the long chain acyl-CoA derivatives 

into the cytoplasm. The modulation of the enzyme activity 

could be explained as a consequence of these shifts. 

Enzymes, depending on their state of phosphorylation, 

will respond differently to substrate or allosteric effectors. 

Phosphorylation is accomplished by protein kinases which, 

after activation by cyclic AMP (c-AMP), catalyze the transfer 

of the y-phosphate group from ATP to enzyme protein. Lee and 

Kim (1977) used antibodies produced against a peptide iso­

lated from ACX to demonstrate that the y-phosphate group 

from ATP was incorporated into ACX during inactivation. 

This inactivation was reversed by incubation with a phos-

phoprotein phosphatase. 

The effect of c-AMP and citrate on the rate and degree 

of ACX phosphorylation was investigated by Lent et al. (1978). 

In the presence of c-AMP, ACX was inactivated due to phos­

phorylation. High citrate concentrations inhibited phosphory­

lation and increased ACX activity while reduced citrate con­

centrations increased rate and degree of phosphorylation. 

A fatty acid binding protein (FABP) in hepatic cytosol 

has also been implicated in the short term control of ACX 

(Lunzer et al., 1977). At 8-10 uM concentrations of 

palmitoyl-CoA, but in the absence of FABP, ACX was inhibited 

by 50%; this could be reversed by the addition of increasing 
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concentrations of FABP. Oleate also produced an inhibition 

of enzyme which was reversed by FABP. It was suggested that 

FABP participates in short term regulation of lipogenesis 

by acting as the major cytosolic binder of inhibitors, such 

as acyl-CoA derivatives. The data did not support a direct 

effect of FABP on the enzyme. 

A physiological role has not been defined for fatty acid 

synthetase in the short term regulation of lipogenesis. 

Although a stimulatory effect of phosphorylated sugars on 

FAS activity was reported (Plate et al., 1968), this finding 

could not be confirmed (Porter et al., 1971). Nor does 

hepatic FAS undergo competitive, reversible inhibition by 

long chain acyl-CoA derivatives as is the case for ACX. 

Recently two forms, an apo- and haloenzyme, of the FAS 

complex have been separated from pigeon liver. They differ 

by the presence or absence of the prosthetic group, 4'-

phosphopantetheine (Kim et al., 1977). The prosthetic group 

can be transferred from coenzyme A to apo-FAS to produce 

halo-FAS. Pigeons were fasted and refed to determine whether 

prosthetic group transfer was regulatory in the activity 

of FAS. Shortly after refeeding, high concentrations of apo­

enzyme were present. Following this period, halo-FAS in­

creased and apo-FAS decreased. After refeeding for 48 hours, 

the pigeons were refasted and the amount of apoenzyme again 
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increased while the haloenzyme decreased. These responses 

suggest that FAS may have physiological significance in the 

short term regulation of fatty acid synthesis. 

Long term regulation of lipogenesis 

The rate of fatty acid synthesis also can be regulated 

by changes in the content of ACX and FAS. Majerus and 

Kilburn (1969) examined changes in ACX activity after fasting 

and fat-free refeeding. Immunological analysis of liver 

homogenates indicated that changes in ACX activity resulted 

from changes in enzyme content rather than from activation 

or inhibition of existing enzyme. The precipitation of 

enzyme by antibody, after pulse labeling with [^H]leucine, 

indicated that the rate of enzyme synthesis increased 5-

to 10-fold after fasted rats were refed a fat-free diet. 

The rate of degradation or half-life of ACX, measured by 

the loss of label, was approximately 48 hours in rats fed 

the fat-free diet and 18 hours in fasted rats. There­

fore, the increase in hepatic ACX content associated with 

fat-free refeeding was due to an increased rate of enzyme 

synthesis and a stabilization of enzyme turnover. 

In a similar study based on isotopic leucine in­

corporation, fasting reduced the rate of hepatic ACX syn­

thesis to half the control value while fat-free refeeding 
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increased the rate almost 4-fold (Nakanishi and Numa, 

1970). The half-life of ACX was 55 hours in the re-

fed animals but accelerated to 31 hours in the fasted 

group. The increase in ACX activity in refed animals, as­

sumed to be in a steady state nutritionally, was ascribed 

to a rise in ACX synthesis. The decrease in ACX activity in 

the fasted, or nonsteady state, was ascribed to decreased 

enzyme synthesis and accelerated enzyme degradation. Both 

of these studies indicated that hepatic ACX has a half-life 

of 1 to 3 days. Thus changes in the rate of enzyme deg­

radation may play an important role over the long term 

as animals move from one nutritional steady state into 

another. 

Alberts et al. (1975) have shown that differences in 

the rates of FAS synthesis are reflected in the amount of 

labeled antibody bound to polysomes. Rats were starved and 

refed a fat-free diet. The specific activity of FAS and 

iodinated antibody binding to polysomes was measured as 

a function of time. After a lag of 4 hours, there was a 

rapid rise in FAS activity which continued throughout the 44-

hour experiment. Enhanced binding of antibody to polysomes 

began 5 hours after refeeding and continued throughout the 

experiment. The data demonstrate that FAS peptide pre­

cursors are associated with polysomes during times of 
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increased FAS activity in the liver. 

Nutritional effects 

This section of the review will deal with the effects 

of dietary fats, triglycerides and fatty acids on ACX, FAS 

and lipogenesis over the long term. 

Hepatic lipogenesis is reduced in response to diets 

high in fat. Hill et al. (1958) demonstrated this by feeding 

rats diets containing graded amounts of fat, 0-15% by weight, 

for three days. Fats used were lard, corn oil, vegetable 

oils and hydrogenated vegetable oils. Livers from animals 

fed fat-free diets had the greatest capacity for converting 

labelled acetate to fatty acids. Adding as little as 3% of 

any fat to the diet caused a measurable depression in lipo­

genesis. When dietary fat was increased to 15%, hepatic con­

version of acetate to fatty acids was reduced 90% compared 

to fat-free controls. Although Hill reported that the various 

fats used were equally effective in depressing hepatic lipo­

genesis, later work has shown that the composition of the 

dietary fat plays an important role in the regulation of 

lipogenesis. For example. Reiser et al. (1963) fed diets 

essentially fat-free or containing 30% by weight of several 

simple triglycerides or natural fats. Rats were fed for 

two weeks. One hour prior to sacrifice, [1-^^C]acetate was 

injected. The amount of labelled, therefore, recently 
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synthesized, fatty acids was determined in various tissues. 

Seven percent of the acetate was incorporated into fatty 

acids in rats on the low-fat diet. Diets containing the 

simple triglycerides depressed lipogenesis progressively as 

fatty acid chain length increased from four to eighteen carbon 

atoms. Increasing amounts of unsaturation in the fats also 

depressed lipogenesis. Triolein and safflower oil were most 

effective. 

Although many workers have found polyunsaturated fatty 

acids (PUPA) more effective than monoenoic or saturated 

fatty acids (SFA) in reducing the activity of hepatic lipo­

genic enzymes, there is no consensus in explaining this 

effect. 

For example, Muto and Gibson (1970) demonstrated that 

the induction of lipogenic enzymes by fat-free refeeding after 

a fast was accompanied by an increase in hepatic synthesis 

of saturated and monounsaturated fatty acids. Supplementa­

tion of the fat-free diet with methyl linoleate or arachi-

donate resulted in a decrease in ACX and FAS. Possibly, 

linoleate and archidonate had a specific effect in reducing 

the activity of lipogenic enzymes. 

The role of tissue levels of polyunsaturated fatty 

acids (PUFA) in rats fasted and refed diets high in lino­

leate (safflower oil), oleate or palmitate was evaluated by 
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Bartley and Abraham (1972). Hepatic lipogenesis was de­

creased significantly by linoleate in comparison to the 

other fats, however, the tissue levels of linoleate did not 

increase. Apparently, decreases in lipogenesis observed 

when PUFA are fed are not related to tissue levels of PUFA. 

Musch et al. (1974) pair-fed rats to exclude any 

effect of caloric intake on enzyme activity. Equal amounts 

of fat-free diets with a methyl ester supplement of oleate or 

a-linoleate were refed to previously fasted rats. The 

activities of lipogenic enzymes including FAS were signifi­

cantly lower in rats fed a-linoleate compared to those fed 

oleate. The authors speculated that the reduction in lipo­

genic activity could result from: 1) inhibition of other 

lipogenic enzymes such as ACX, 2) conversion of fatty acids 

to prostaglandins and their interaction with c-AMP in regula­

tion of synthesis or activity of lipogenic enzymes, 3) 

alterations in membrane lipid properties which may affect 

membrane-hormone interactions or 4) formation of a lipid 

containing repressor for genes of lipogenic enzymes. 

To determine whether prostaglandin (PG) synthesis was 

involved in the decreased FAS activity when 15% SO compared 

to CO was fed, indomethacin, a drug which inhibits PG syn­

thesis, was administered to rats on the SO diets. 

Administration of the drug failed to restore fatty acid 
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synthesis to control levels. Apparently PG synthesis is not 

required for the linoleate induced decrease in FAS activity 

(Flick et al., 1977). 

The differential effect of methyl esters of saturated 

and unsaturated fatty acids on lipogenesis could be due to 

differences in ester absorption. To eliminate this possi­

bility, Clarke et al. (1977) compared methyl ester absorption 

in the rat. The esters of ^i8-2 ^18-3 very 

similar in absorption. When these esters were used in 

feeding studies, low levels of and effectively 

inhibited the activity of FAS and other lipogenic enzymes. 

In contrast equivalent amounts of had little effect on 

lipogenesis. The consumption of a high carbohydrate diet 

containing as little as 3% by weight safflower oil also 

caused a decrease in lipogenic enzyme activity. 

Although changes in activity or content of ACX and 

FAS are usually coordinated when rates of fatty acid syn­

thesis change, there is evidence that FAS may be critical 

in long term regulation of fatty acid synthesis. Guynn 

et al. (1972) demonstrated that malonyl-CoA levels were not 

directly related to fatty acid synthesis when high carbo­

hydrate diets were fed. In rats trained to consume their 

daily ration in 3 hours, malonyl-CoA increased 2-fold while 

fatty acid synthesis increased only 40%. Apparently the rate 
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of fatty acid synthesis was limited by the ability of hepatic 

FAS to utilize malonyl-CoA. 

Long term effects of dietary fats on hepatic ACX and 

FAS in chicks have also been studied (Liou and Donaldson, 

1973). Activity of both enzymes was depressed equally by 

the addition of 4% fat to a fat-free basal diet. However, 

when 8% or more fat was fed, FAS activity was depressed more 

than the activity of ACX. Therefore, the ratio of syn­

thetase to carboxylase activity was decreased as fat addition 

was increased. The data suggest that FAS rather than ACX 

is the rate limiting enzyme with high-fat diets. 

In contrast, the enteral administration of corn oil 

to animals adapted to a fat-free, high-carbohydrate diet, 

caused a decrease within two hours of the hepatic conversion 

of labelled acetate to fatty acids (Bortz et al., 1963). 

Fatty acid synthesis from malonyl-CoA was not inhibited, 

while synthesis from acetyl-CoA was depressed. These findings 

suggest that the block in lipogenesis occurs at the step in­

volving ACX. 

Additional differences in the response of lipogenic 

enzymes and fatty acid synthesis to 0 to 25% of calories 

from soybean oil have been reported (Carrozza et al., 1979). 

While FAS activity was inhibited with as little as 3% fat, 

rate of lipogenesis and ACX activity were depressed only when 
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the level of dietary fat was 12% or greater. These results 

indicate that fatty acid synthesis is better correlated with 

ACX than with FAS activity. 

Wiegand et al. (1973) investigated the response of 

FAS and glycerophosphate acyl-transferase (GPAT), active 

during the synthesis of glycerides, to differences in the 

quantity of dietary fat. The addition of 2.5 or 5% safflower 

oil to a fat-free diet reduced FAS activity by 25 and 40%, 

respectively. The activity of GPAT was not significantly 

different with the fat-free or fat-containing diets. It 

would appear that fatty acid synthesis rather than fatty 

acid esterification is affected by fat quantity during 

triglyceride production. 

The rate of fatty acid synthesis was not significantly 

decreased when rats were fed diets containing 1.5% cholesterol 

and 0.5% cholic acid for 2 to 4 weeks only, despite marked de­

creases in the activities of ACX and FAS (Tsaiand Dyer, 1973). 

However, the rate of hepatic fatty acid synthesis decreased 

when cholesterol feeding was continued for longer than 

five weeks. 
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Hormonal regulation 

Insulin, glucagon, glucocorticoids, adrenaline and 

triiodothyronine are among the hormones known to affect 

lipogenic enzymes. The exact role of these hormones in 

allosteric or covalent modification is not completely 

understood. The changes can affect enzyme activity or syn­

thetic or degradative processes which regulate enzyme content. 

Insulin and glucagon are important regulators of FAS 

activity when previously fasted rats are refed a fat-free 

diet (Lakshmanan et al., 1973). The normal increase in FAS 

activity under these circumstances was abolished in diabetic 

animals. But, diabetic rats receiving insulin during re-

feeding had increased FAS activity which was indistinguish­

able from the response of nondiabetic rats. When nondiabetic 

animals were injected with glucagon, then fasted and refed, 

a reduction in FAS activity followed in proportion to the 

dose of glucagon. 

Klain and Weiser (1973) observed a selective effect of 

glucagon on ACX activity and fatty acid synthesis. Within 

15 minutes of glucagon injection, synthesis of fatty acids 

from [U-^'^C] glucose was markedly decreased. The activity of 

ACX measured in liver slices collected within minutes of 

glucagon injection was also decreased. 

The role of glucagon in the regulation of ACX activity 



www.manaraa.com

21 

via phosphorylation-dephosphorylation was recently clari­

fied (Witters, et al., 1979). Hepatocytes from fasted, re-

32 
fed rats were incubated with P^. One group of cells was 

then treated with glucagon. The incorporation of label into 

ACX as well as ACX activity were compared in these and con­

trol cells. Cellular exposure to glucagon resulted in in-

32 
creased incorporation of P^ into ACX and diminished the 

production of fatty acids from ^H20 thereby linking the 

hormone to enzymatic regulation of lipogenesis. 

Halestrap and Denton (1974 K who measured ACX activity in 

rat epididymal fat pads, found that the addition of insulin 

to pads with exogenous glucose led to an increased propor­

tion of polymeric enzyme. In contrast pad exposure to 

adrenaline in the presence of glucose and insulin de­

creased enzyme activity and increased the proportion of 

ACX in the protomeric form. The authors were unable to find 

any evidence of ACX phosphorylation-dephosphorylation during 

hormonal manipulation. However, changes did occur in the 

concentration of citrate, which promoted, or fatty acid 

thioesters, which inhibited enzyme polymerization. 

In hepatocytes from fed rats, glucagon changed fatty 

acid metabolism from synthesis to oxidation. Changes in cel­

lular citrate and malonyl-CoA levels indicated that glucagon 

inhibited glycolysis and probably the action of acetyl-CoA 

carboxylase. Evidently in fasting or diabetes during which 
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the ratio of glucagon to insulin is high, fatty acid synthesis 

is inhibited but fatty acid oxidation and ketone body pro­

duction are increased (McGarry et al., 1978). 

The effect of interperitoneal injections of triiodo­

thyronine on hepatic enzymes regulating fatty acid synthesis 

and oxidation was examined by Diamant et al. (1972). Hormone 

treatment increased the activity of both ACX and FAS in fed 

and fasted rats. Fatty acid oxidation in liver slices from 

the same animals was also increased. There were no net 

changes in plasma or liver triglyceride levels. Apparently, 

increased enzyme activity was due to an increased rate of 

fatty acid turnover. 

The importance of different hormones in fatty acid 

synthesis may be tissue dependent. For example, gluco­

corticoids appear to regulate fatty acid synthesis in 

adipose but not liver tissue (Volpe and Marasa, 1975). A 

marked decrease in the amount of ACX and FAS or fatty acid 

synthesis in adipose tissue followed administration of 

hydrocortisone. In contrast, no changes in enzyme content 

or fatty acid synthesis occurred in liver. Apparently, the 

normal stimulatory effect of insulin on hepatic ACX and FAS 

counteracts any inhibitory effect of hydrocortisone, but in 

adipose tissue the stimulatory effect of insulin is not as 

great allowing measureable inhibition of fatty acid synthesis 
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by hydrocortisone. 

Regulation of the Activity 
of HMG-CoA Reductase 

Under most physiological conditions, HMG-CoA reductase 

(mevalonate:NADP oxidoreductase EC 1.1.1.34) is considered 

the rate limiting enzyme in the biosynthesis of cholesterol 

(Siperstein and Fagan, 1964; Shapiro and Rodwell, 1971). 

Diurnal rhythm 

Ten years ago a circadian or diurnal rhythm was identi­

fied in reductase activity when rats were fed ad libitum 

and conditioned to two twelve hour photoperiods of light and 

dark. Under these conditions, hepatic reductase varied 

from 5- to 10-fold every 24 hours. Maximum activity 

occurred approximately 6 hours into the dark period and 

minimum activity, 6 hours into the light period (Back 

et al.; 1969; Edwards et al., 1972). Shapiro and Rodwell 

(1972) reported the existence in the dark cycle of 2 

activity peaks separated by approximately 2 hours which 

were blocked by cycloheximide. Periodicity in the rate of 

cholesterol synthesis from acetate has been correlated with 

reductase activity (Dugan et al., 1972). 

The diurnal rise in the level of HMG-CoA reductase is 

associated with refeeding and can be relocated by changing the 
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time of feeding (Dugan et al., 1972). When discrete meals 

were fed during the light photoperiod, peak reductase 

activity occurred 2 hours after the meal in the light period. 

The rate of enzyme formation increased 7- to 10-fold during 

this sharp rise and could be abolished by the administra­

tion of cycloheximide. Enzyme degradation, however, was 

constant throughout the diurnal changes in enzyme activity. 

Mevalonolactone administration suppressed reductase 

activity more rapidly than cycloheximide administration sug­

gesting that the catalytic efficiency of the enzyme may have 

been altered (Edwards et al., 1977). Additionally, reductase 

activity has been modified in vitro by activator-inactivator 

proteins. The enzyme has been inactivated in the presence 

32 
of [y P] ATP but reactivated with an activator protein 

(Nordstrom et al., 1977). 

The diurnal rhythm of the reductase responds differently 

to dietary cholesterol or to feeding. Reductase activity de­

creased about 20-fold when rats were fasted for 36 hours but 

cyclic activity persisted (Shapiro and Rodwell, 1972). How­

ever, the usual rise in reductase activity was almost abolished 

by 10 hours of cholesterol feeding. Cholesterol synthesis 

was also reduced greatly. The data suggest that cholesterol 

feeding or fasting may regulate reductase activity and perhaps 

cholesterol synthesis by different mechanisms. Dietary 

cholesterol has been shown to increase microsomal cholesterol 
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ester concentrations. It has not been clear whether an in­

crease in these esters must precede the observed inhibition 

of the reductase (Edwards and Gould, 1974). 

Regulation by metabolites 

There are three major sources of cholesterol available 

to the hepatocyte: hydrolysis of stored cholesterol esters, 

uptake of lipoproteins into the cell followed by hydrolysis 

of cholesterol esters and synthesis de novo from acetyl-CoA. 

In general, the cellular rate of cholesterol synthesis is de­

termined by the balance of cholesterol input to the cell rela­

tive to cellular needs for structural or secretory processes. 

Nervi and Dietschy (1978) examined the effect on cho­

lesterol synthesis of the size of the bile acid pool and 

the amount of cholesterol reaching the liver. The rate of 

cholesterol synthesis varied inversely with the size of the 

bile acid pool which was varied by feeding taurocholate. The 

rate of cholesterol synthesis varied directly with the rate 

of bile acid synthesis which was manipulated via biliary 

drainage. 

When intestinal lipoproteins were injected into rats, 

net cholesterol uptake took place only in the liver where 

cholesterol synthesis was inhibited. When rats were in­

jected with lipoproteins or fed cholesterol, there was 

generally a correlation between inhibition of cholesterol 
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synthesis and cholesterol ester content of the liver (Nervi 

et al., 1974). 

The effects of dietary fat 

The effects of saturated and unsaturated fatty acids 

on the secretion of very low density lipoproteins (VLDL) have 

been investigated during liver perfusion. Approximately 

50% more triglyceride (TG) was secreted from the liver when 

oleate rather than palmitate was perfused. The less dense 

VLDL from oleate contained half as much cholesterol and 

phospholipid per ymole TG than did the VLDL from palmitate 

(Heimberg and Wilcox, 1972). The infusion of oleic acid 

stimulated cholesterol synthesis from and cholesterol 

output from the liver, suggesting that cholesterol synthesis 

is obligatory for the secretion of TG by the liver (Goh and 

Heimberg, 1973). 

The output of TG, cholesterol and activity of 

HMG-CoA reductase were measured following perfusion of 

liver with equimolar quantities of palmitic (16:0), oleic 

(18:1) or linoleic acid (18:2). The activity of the enzyme 

decreased in the order 18:1>18:2 = 16.0. Triglyceride out­

put decreased in the order 18:1 = 18:2>16:0. Output of free 

and esterified cholesterol was in the order 18:1>18:2>16:0. 

Apparently the degree of saturation of the fatty acids 

entering the liver affected the TG and cholesterol profile 
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of the VLDL output which in turn affected cholesterol 

synthesis. 

The protein to which cholesterol is attached in lipo­

proteins can also affect the ability of cholesterol to regu­

late cellular HMG-CoA reductase activity. In human fibro­

blasts, reductase activity was suppressed by delivery of 

cholesterol in low density lipoprotein (LDL) or VLDL but not 

by serum from a patient with abeta-lipoproteinemia. This 

serum contained protein bound cholesterol primarily as high 

density lipoprotein (HDL) but lacked apoprotein B, common to 

LDL and VLDL (Brown et al., 1974). 

The diurnal cycle in reductase activity was evident 

when 0, 5 or 20% corn oil was fed to rats although changes 

in activity differed. For exan^le,activity varied 2-fold 

on 0% oil, 6-fold on 5% oil and 4-fold when 20% was fed, but 

the peak always occurred during the feeding cycle. Goldfarb 

and Pitot (1972) noted that cholesterol 7a-hydroxylase and HMG-^CoA 

reductase activity fluctuated in a closely parallel manner. 

The authors suggested, therefore, that peak reductase activity 

reflected a diurnal fluctuation in bile acid synthesis where­

by bile acids are synthesized in preparation for intake of 

diets containing lipid. 

A study by Ide et al. (1978) indicated that hepatic 

reductase activity depends on the composition of the dietary 

fat, especially fatty acid chain length and degree of satu-
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ration. Activity of HMG-CoA reductase increased significant­

ly as fatty acid chain length increased from trioctanoin 

through trilaurin, tripalmitin and tristearin. Significant 

decreases in activity were associated with increased urn-

saturation . The feeding of tristearin caused the highest 

reductase activity while feeding safflower oil with 74% 

linoleate led to the lowest activity. 

Dietary fats can ultimately affect several parameters 

of cholesterol metabolism. For example, the addition of 10% 

tripalmitin or safflower oil to chow diets did not affect 

cholesterol synthesis, the activity of HMG-CoA reductase, 

or fecal steroid or bile acid output. However, with the 

addition of cholesterol to these diets, PUPA, compared to 

tripalmitin, inhibited cholesterol synthesis but increased 

cholesterol stores and bile acid secretion (Bochenek and 

Rodgers, 1978). 

Hormonal regulation 

The rhythm in HMG-CoA reductase activity persists 

despite changes in lighting or feeding schedules, although 

there may be alterations in the time or amplitude associated 

with peak activity. Since hormones markedly affect choles­

terol biosynthesis, it is possible that rhythmic changes in 

the levels of certain hormones are responsible for the 

diurnal variations associated with HMG-CoA reductase and 
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cholesterogenesis. 

The involvement of insulin in the regulation of reduc­

tase activity was illustrated by the work of Lakshmanan 

et al. (1973). Animals made diabetic by injections of 

streptozotocin had greatly reduced reductase activity. How­

ever, daily protamine zinc insulin therapy restored the 

reductase activity to near normal and increased cholesterol 

synthesis from acetate. 

Glucagon prevented the increase in reductase activity 

and cholesterol synthesis seen with stimulatory agents in­

cluding insulin or thyroxine (Lakshmanan et al., 1973). 

Additionally glucagon inhibited the diurnal rise in 

hepatic activity associated with ad libitum feeding 

(Nepokroeff et al., 1974). 

The effects of glucagon and insulin may be associated 

with the regulation of the level of hepatic c-AMP by these 

hormones (Exton et al., 1971). Glucagon increased the level 

of c-AMP in the liver while insulin reduced this level. 

Apparently, insulin and glucagon acted by controlling levels 

of the "second messenger", c-AMP, and increased or decreased, 

respectively, hepatic cholesterogenesis. 

The addition of physiological doses of insulin to hepa-

tocytes, in a study by Edwards et al. (1979), did not in­

crease reductase activity or sterol efflux from these cells. 
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Possibly increased activity, reported earlier, was due to 

the use of pharmacological doses of the hormone. Also in 

this later study, glucagon and dibutyryl c-AMP inhibited 

induction of HMG-CoA reductase while norepinephrine caused 

an increase in reductase activity. Cholesterol efflux from 

hepatocytes was inhibited by addition of any of the three. 

Regulation of the Activity of 
Cholesterol 7a-hydroxylase 

Cholic acid and chenic (chenodeoxycholic) acid are the 

two primary bile acids formed from cholesterol in mammalian 

liver. During biosynthesis of these acids, changes in the 

cholesterol ring system precede side chain oxidation. Micro­

somal cholesterol 7a-hydroxylase catalyzes the first of 

these changes, the hydroxylation of cholesterol to form 

7a-hydroxycholesterol. Cholesterol 7a-hydroxylase is a 

mixed function oxidase, an enzyme which catalyzes the 

introduction of one atom of molecular oxygen into a substrate 

while the other atom is reduced to water. 

This step is considered rate limiting in bile acid 

synthesis based on data from numerous studies. For example, 

bile acid synthesis was stimulated as much as ten-fold in 

rats with bile fistulas. This increase in synthesis was 

accompanied by an increase in the activity of cholesterol 

7a-hydroxylase but not in the activity of enzymes catalyzing 
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two subsequent steps in the synthetic pathway (Danielsson, 

1972). Similar results were obtained by Shefer et al. 

(1973) who found essentially no rate limiting enzymatic con­

versions beyond the formation of 7a-hydroxycholesterol in 

the pathway from labelled acetate to bile acids. 

Bile acid synthesis 

The concentration of bile acids in the enterohepatic 

circulation appears to be a regulator of bile acid bio­

synthesis and therefore, cholesterol 7a-hydroxylase activity. 

Bile acid formation increased not only in response to bile 

fistula but also to the administration of bile acid binding 

resins. In contrast, normal or increased rates of bile . 

acid synthesis were depressed by duodenal infusion of bile 

acids (Shefer et al., 1969). Shefer et al. (1973) fed tauro-

cholate, taurodeoxycholate and taurochenodeoxycholate as 1% 

of the diet for one week. All three bile acids reduced the 

activity of HMG-CoA reductase but only taurocholate and tauro­

deoxycholate inhibited cholesterol 7a-hydroxylase. In all 

groups biliary secretion of bile acids was nearly double and 

composition of the bile acid pool was shifted and reflected 

the administered bile acids. The authors concluded that the 

composition, magnitude and enterohepatic circulation rate 

of the bile acid pool influence the hepatic concentration 

of cholesterol 7a-hydroxylase. 
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The mechanisms by which bile acids regulate enzyme 

activity at the molecular level are unknown. However, the 

rise in cholesterol 7a-hydroxylase activity after interrup­

tion of enterohepatic circulation of bile was prevented by 

treatment with actinomycin D, an inhibitor of protein synthe­

sis. Einarsson and Johansson (1968) concluded that in­

creased enzyme synthesis, rather than activation of pre­

existing enzyme, caused the increase in hydroxylase activity. 

In this study the half-life of the hydroxylase was estimated 

to be 2 to 3 hours so that rapid changes in enzyme activity 

were possible. 

Diurnal regulation 

Several investigators have confirmed the initial obser­

vation by Gielen et al. (1969) that cholesterol 7a-hydroxy­

lase activity varies diurnally with equal photoperiod of 

light and dark when rats are fed ad libitum. Under these 

conditions, maximum activity is generally 2 to 4 times 

higher than minimum activity and occurs 6 hours after the 

beginning of the dark period. In contrast, minimum activity 

occurs 6 hours into the light photoperiod. . 

Increased enzyme synthesis appears to be necessary for 

the diurnal rise in hydroxylase activity. If rats were in­

jected with either solutions of actinomycin D or only carrier 

prior to the expected peak in hydroxylase activity, the rise 
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in activity occurred only in the carrier injected rats (Mitro-

poulous et al., 1972). 

Lighting has little effect on enzyme rhythm. Rats were 

maintained under three different lighting schedules; com­

plete darkness, continuous light or equal daily photoperiods 

of light and dark (Gielen et al., 1975). The extent of peak 

activity and the time the peak occurred were similar in all 

groups. 

When animal groups were either fed or fasted for 

24 hours, diurnal variations persisted in hydroxylase 

activity during fasting. Peak activity, however, was not 

as great and occurred earlier in the fasted group compared 

to that fed ad libitum (Mitropoulous et al., 1972). 

Related activities of HMG-CoA reductase and cholesterol 7a-
hydroxylase 

Various factors affect the relationship between choles­

terol synthesis and degradation and, therefore, the rate 

limiting enzymes of these processes. The activities of 

cholesterol 7a-hydroxylase and HMG-CoA reductase respond in 

a coordinated way to a number of regulators including time, 

dietary factors and some hormones. 

Danielsson (1972) found that the incorporation of 

labelled acetate into cholesterol and the activity of 

cholesterol 7a-hydroxylase followed the same rhythmic pat­

terns of diurnal variation. The author interpreted these data 
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to indicate that changes in the rates of bile acid and cho­

lesterol synthesis occurred almost concomitantly. He noted 

that this interpretation did not agree with that of Myant and 

Eder (1961) who had claimed that during biliary drainage, 

changes in cholesterol synthesis preceded changes in bile 

acid synthesis. 

Later work dealing with the regulation of cholesterol 

7a-hydroxylase by cholesterol synthesis (Takeuchi et al., 

1974) supported the findings of Myant and Edar. Rates of 

cholesterol synthesis and degradation were followed after oral 

administration of labelled glucose to fasted rats. One hour 

after glucose administration, hepatic cholesterol synthesis 

increased but hydroxylase activity did not change. However, 

two hours after treatment, hydroxylase activity increased, 

indicative of a lag phase in cholesterol degradation fol­

lowing the induction of cholesterol synthesis. 

The effect of fat type 

Conclusions differ concerning the effect of dietary fat 

saturation on the activity of cholesterol 7a-hydroxylase. 

Mayer and Mayer (1974) found after two weeks of feeding that 

hydroxylase activity was lower in rats fed coconut oil com­

pared to corn oil at 40% of calories. Bile acid secretion 

was 3 times greater on the corn oil rather than coconut oil 

diet probably leading to an increase in bile acid excretion 
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and hydroxylase activity. 

In contrast,hydroxylase activity, expressed as pmoles/ 

mg protein/min, did not vary when coconut, corn or peanut 

oils or butter were fed for five weeks (Kritchevsky et al., 

1977). 

Recently the activity of cholesterol 7a-hydroxylase was 

determined after rats were fed 0, 6 or 20% by weight of syn­

thetic triglycerides varying in chain length or degree of satu­

ration (Bjorkhem et al., 1978). The addition of tripalmitin 

and trierucin increased 7a-hydroxylase activity compared to 

the fat-free stock diet while trilinolein or triolein caused 

significantly lower activity. Addition of trilaurin had 

little effect on 7a-hydroxylation of cholesterol. The 

lowest level of activity was obtained with fatty acids that 

were readily absorbed from the intestine i.e., linoleic and 

oleic acids. Therefore, the authors suggested that the re­

duced absorption of some fatty acids is coupled with a 

reduced absorption of bile acids. The resulting loss of 

bile acids in the feces may then cause an increase in 7a-

hydroxylation. 

Cholesterol feeding caused markedly different responses 

in the activities of HMG-CoA reductase and cholesterol 7a-

hydroxylase (Raicht et al., 1975). The absorption of dietary 

cholesterol was accompanied by inhibition of cholesterol 
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synthesis but enhanced synthesis of bile acids. Despite these 

adaptations in rates of synthesis, liver cholesterol concen­

tration increased four-fold. 

Hormonal regulation 

Studies dealing with hormonal regulation of the hydroxy­

lase are not extensive but there is evidence that hormones 

can regulate enzyme activity. For example, hydroxylase 

activity first appears at weaning which coincides with 

maturation of the hypothalamo-hypophysis-adrenal axis 

(Van Canfort, 1973). In older animals, the diurnal rhythm 

can be abolished by hypophysectomy or adrenalectomy (Gielen 

et al., 1975). Various glucocorticoids including Cortisol 

can increase hydroxylase activity significantly. Gielen 

et al. (1975) observed that cholesterol 7a-hydroxylase 

activity and plasma corticosterone levels changed in parallel 

and were modified similarly by alterations in lighting or 

feeding schedules. 

The influence of variations in thyroid activity on 

cholesterol synthesis and degradation has also been investi­

gated (Takeuchi et al., 1975). Rats made either hyper-

thyroid by treatment with thyroid powder or hypothyroid by 

treatment with thiouracil were additionally given oral labelled 

doses of glucose or cholesterol. Cholesterol 7a-hydroxylase 

activity was increased by small doses of thyroid powder while 
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much higher doses were necessary to increase cholesterol 

synthesis. Suppression of cholesterol 7a-hydroxylase 

activity was brought about by much lower doses of thiouracil 

compared to those required to decrease cholesterol synthesis. 

Apparently the activity of cholesterol 7a-hydroxylase is more 

sensitive to variations in thyroid function than are the 

activities of the cholesterol synthesizing enzymes. 

The Effect of Fat Saturation on Lipogenesis 
and Cholesterogenesis 

Bortz (1967) investigated the effect of a corn oil meal 

given by stomach tube on rates of lipid and cholesterol 

synthesis as rats were sacrificed periodically for 24 

hours after intubation. Rapid production of acyl-CoA deriv­

atives and acetyl-CoA was accompanied by an increase in ketone 

body synthesis and a decrease in lipogenesis. Cholesterol 

synthesis was altered later. Since cholesterol and aceto-

acetate share the common precursor, acetyl-CoA, increases 

in their rates of synthesis should coincide if increased 

cholesterol synthesis depended only on surplus substrate. 

This was not observed. Therefore, cholesterol synthesis may 

have been increased by induction of HMG-CoA reductase via 

increased availability of ketone bodies, substrates for 

cholesterol formation, or by removal of feedback control 

on reductase due to release of intrahepatic bile acids in 
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response to dietary fat. 

Cholesterol and fat may influence the pathways syn­

thesizing cholesterol or fatty acids by different mechanisms. 

Feeding a fat-free diet for six days after fasting or a low-

fat regimen increased the activity of ACX and FAS. However, 

reductase activity and cholesterol synthesis were depressed 

(Craig et al., 1972). With the addition of 2% cholesterol, 

reductase activity and cholesterol synthesis were markedly 

depressed while ACX and FAS activities were unaffected. 

Recently, Ide et al. (1979) examined the effect of 

various fats on the activity of HMG-CoA reductase and other 

lipogenic parameters in fasted-refed rats. After 1 day 

of refeeding, the activity of HMG-CoA reductase or the in­

corporation of [1-^^C] acetate into fatty acids or sterols 

was not fat dependent. After 3 days of refeeding, ef­

fects of dietary fats on reductase activity were apparent. 

In contrast, rates of fatty acid synthesis did not differ 

due to type of fat until at least 7 days of refeeding. 

This may indicate that the mechanisms underlying the regu­

lation of lipogenesis or cholesterogenesis differ over the 

short versus the long term. 

In an extended study, incorporation of [l-^^C]acetate 

into liver cholesterol was stimulated by corn oil but liver 
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fatty acid synthesis was depressed by either corn oil or 

butter (Serdarevich and Carroll, 1971). Increased synthesis 

of hepatic cholesterol with com oil may have been due to 

the increase in fecal steroid excretion noted with that fat. 

After 10 weeks, serum cholesterol concentrations were 

similar with either safflower oil or lard while triglyceride 

levels were depressed by safflower oil (O'Brien et al., 

1977). When cholesterol was added to lard or SO, serum 

cholesterol increased 5- or 3-fold, respectively. These 

fats had little effect on hepatic cholesterol but hepatic 

triglyceride concentrations were higher with lard compared 

to SO. When cholesterol was added to either diet, hepatic 

triglycerides were not affected but hepatic cholesterol 

was greatly elevated. 

Acetyl-CoA Precursors 

Circulating or tissue precursors of active C^ residues 

enter the acetyl-CoA pool and are utilized in different 

metabolic pathways including lipogenesis and cholestero-

genesis. The nature of these precursors and their effective 

contributions to the synthesis of lipids or cholesterol 

has been investigated by several techniques. For example, 

rats were injected with [^H]acetate or [U-^^C]palmitate, 

oleate or linoleate after saturated or polyunsaturated fat 
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feeding. Tritiated acetate was incorporated into total lipid 

and cholesterol but incorporation into cholesterol was 

negligible (Dupont, 1970). Apparently, exogenous acetate 

rather than fatty acids was a more readily available choles­

terol precursor. 

However, in hepatocytes exogenously added pyruvate or 

lactate was more available as a source of sterol carbon than 

was acetate. Perhaps this effect was due to differences in 

cell membrane permeability to these precursors. It is also 

possible that acetate to sterol conversion was restricted by 

low activity of a pathway enzyme, such as acetyl-CoA syn­

thetase. The rate of sterol synthesis was unchanged even 

when acetate, pyruvate or lactate concentrations were in­

creased. Apparently acetyl-CoA concentrations are not rate 

limiting for cholesterogenesis (Gibbons and Pullinger, 

1979). 

Serum Lipoprotein 
Composition 

The effects of dietary lipids on serum lipid con­

centrations as well as lipoprotein synthesis, clearance and 

degradation in both humans and experimental animals have 

been reviewed recently (Grundy, 1979; Truswell, 1978). 

Lipids, except for fatty acid-albumin combinations. 
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are transported in plasma as soluble lipoproteins. They 

are classified conveniently into four classes on the 

basis of density, flotation rate or electrophoretic 

mobility: chylomicrons, very low density lipoproteins 

(VLDL), low density lipoproteins (LDL) and high density 

lipoproteins (HDL). 

Derivation and function of these four classes and 

alterations that occur in their properties due to dietary 

manipulation are not completely understood. However, 

these alterations may be important since low plasma HDL 

concentrations seem as characteristic of patients with 

heart disease as are elevated concentrations of VLDL and 

LDL (Lewis, 1977). Strong negative correlations have 

been reported between HDL cholesterol concentrations and 

the masses of both rapidly and slowly exchangeable cho­

lesterol pools. Evidently, cellular concentrations of 

cholesterol and its storage in various tissues are re­

lated to lipoprotein composition (Miller et al., 1975). 

In rats (Frnka and Reiser, 1974), gerbils (Nicolosi 

et al., 1976) and dogs (Lindall et al., 1971), dietary 

saturated but not polyunsaturated fats caused an in­

crease in VLDL or LDL fractions and usually in cholesterol, 

triglyceride and phospholipid concentrations. 
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Diurnal Variations in Parameters 
of 

Lipid Metabolism 

Diurnal variations in the activities of HMG-CoA 

reductase and cholesterol Ta-hydroxylase and cholesterol 

synthesis have been reviewed. Other parameters associated 

with lipid metabolism have also been measured during a 

24 hour period, usually to identify changes which occur 

between the 12 hour dark, or food intake period, and the 

light period. 

In both lean and obese Zucker rats, the rate of 

hepatic fatty acid synthesis from labelled pyruvate was 

increased during the dark and decreased during the light 

period when low-fat diets were fed. Fatty acid synthetase 

activity, however, did not change with photoperiod (Martin 

et al., 1979). This study is typical of others in which 

changes (diurnal or not) in the rate of a metabolic 

process were not accompanied by changes in the activity 

of the pathway enzymes. 

Lipogenesis and cholesterogenesis were also signifi­

cantly higher during the food intake rather than light 

period in a study by Kimura et al. (1970). Differences 

in rates of synthesis between photoperiods were more 

marked in younger, 90 g, rats than in older rats, perhaps 

because the younger rats consumed more food during the dark 
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period. 

Lipoprotein lipase activity peaked in adipose during a 

dark cycle and decreased to a minimum in the light (De Gasquet 

et al., 1977). Variations in plasma free fatty acids, tri­

glycerides and ketone bodies were more evident over 24 hours 

when fat supplied 9% rather than 73% of total calorie intake. 

Maxima occurred in all three parameters during the dark 

cycle with the low fat diet. 

A diurnal rhythm was observed in the concentration of 

plasma triglycerides, free fatty acids, corticosterone and, 

to a lesser extent, insulin when rats were fed diets con­

taining various carbohydrates with 2% fat. There was, however, 

no significant diurnal variation in the activity of fatty acid 

synthetase (Bruckdorfer et al., 1974). 

Cyclic changes in the fatty acid patterns of liver lipids 

were identified in rats fed a high corn oil diet (Wadhwa 

et al., 1973). The composition of the liver triglycerides 

was affected by cycles associated with the individual fatty 

acids. In another study, hepatic protein concentrations 

varied over 24 hours as did the activity of certain lipo-

genic enzymes (Peret et al., 1976). 

With fat-free diets, rhythmic variations occurred in 

cholesterol and fatty acid synthesis, in hepatic cholesterol 

and bile acid content as well as in plasma free fatty acid 
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levels (Bortz and Steele, 1973). Fatty acid synthesis, 

determined by [1-^^C] acetate incorporation followed the on­

set of the feeding period with a subsequent fall in free 

fatty acids. Bile acid and cholesterol content peaked in 

the dark although no reciprocal relationship was noted 

between cholesterol synthesis and either hepatic bile acid 

or cholesterol content. 

Rhythms in some lipid parameters appear to be linked 

to food intake. Possibly specific metabolites resulting from 

alimentation are the active regulatory agents (Bortz and 

Steele, 1973; Fuller and Diller, 1970). However, hormones 

also affect the rate of many processes of lipid metabolism. 

Insulin and glucagon secretion are apparently controlled by 

food intake and vary diurnally (Bruckdorfer et al., 1974; 

Hellman and Hellerstrom, 1959). These and other hormones 

may have regulatory roles in the diurnal rhythms of lipid 

metabolism. 
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METHODS AND MATERIALS 

Three experiments were designed to explore whether di­

urnal variations exist in the activities of selected lipo-

genic enzymes and in concentrations of tissue lipids. The 

effect of certain variables on these parameters and on the 

activities of HMG-CoA reductase and cholesterol 7a-hydroxylase 

was also examined. Variables included degree of saturation 

and level of dietary fat, exogenous cholesterol and length of 

feeding. The design used for this study is shown in Figure 2. 

Animal Treatment 

Male Wistar rats,^ 3 to 5 months old, and weighing 

440 to 465 g, were used in this study. Prior to the 

experimental period, rats were fed a modified Steenbock XVII 

ration (Table 1). Additionally, each rat received an oral 

dose of 165 yg retinyl acetate and 1.25 ug vitamin Dg in 

50 mg corn oil weekly. 

During the experimental period, rats were housed 

individually in screen bottom cages in a room maintained 

at 24 + 1°C with relative humidity approximately 45%. 

Cages were changed weekly. Reversed photoperiods were used 

in the animal room with 12 hours light (3 p.m. to 3 a.m.) 

or dark (3 a.m. to 3 p.m.). 

^Stock colony. Department of Food and Nutrition, Iowa 
State University. 
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Figure 2. Experimental design 
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Table 1. Stock ration for maie rats: modified Steenbock 
XVII (1976-1978) 

Dietary Component Percent by weight 

Corn meal^ 45.6 
Skim milk ^ 10.3 
CaCOg + trace elements 0.4 

NaCl (iodized salt)^ 0.4 
Brewers yeast^ 8.6 
Casein, high protein^ 7.0 
Alfalfa meal® 1.7 
Wheat germf 10.8 
Linseed meal9 11.6 
Corn oil^ 3.5 
Corn oil + vitamin D^ 0.1 

^Teklad, Madison, Wisconsin. 

^Des Moines Cooperative Dairy, Des Moines, lowa. 

^Matheson Coleman and Bell Division, Matheson Company, 

Inc., Norwood, Ohio (contains KI, 0.2 g; MnSO^, 0.79 g; K2AL2 (804)4 
0.245 g; CuSO^, 1.018 g; and CaCO^ to make 500 g total). 

^Morton salt. 

^National Alfalfa, Lexington, Nebraska. 

^General Mills, Inc., Minneapolis, Minn. 

^Froning and Deppe Elevator, Ames, Iowa. 

^Mazola, Best Foods Division Corn Products Co., New 
York. 

^Crystalline vitamin D^ (cholecalciferol) diluted to 

2,000 lU (50 mcg/kg diet) with corn oil. 
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Dietary Treatments 

Five diets were used in this study (Table 2). Fat 

calories were supplied by coconut oil (CO) or safflower 

oil (SO). The CO diets were supplemented with SO which 

served as a source of essential fatty acids. When the level 

of CO was reduced (experiment 3), corn starch was substituted 

for coconut oil on a weight basis. A 4.3% increase in calo­

ries from protein in this ration was not considered signifi­

cant since the rats were past the stage of rapid growth. 

Eight (experiments 1 and 3) or 16 (experiment 2) treat­

ment groups (diet and time) consisted of 6 rats each. A 

pair of littermates was assigned to diets which differed in 

fat type (experiment 1), fat level (experiment 3) or con­

tained the same fat with or without cholesterol (experiment 

2). Animal feeding was begun on a schedule so that each 

animal was fed a total of 12 weeks (experiment 1 or 2) or 

4 weeks (experiment 3) before sacrifice. 

Diet and water were fed ad libitum. Additionally, water-

and fat-soluble vitamin supplements were given in small cups 

each day. The composition of the water-soluble vitamin 

mixture is presented in Table 3. Vitamin E was diluted with 

corn oil so that 50 mg daily supplied 0.75 mg DL-a-tocopherol 

acetate. A calibrated dropper which delivered in 2 drops 

approximately 50 mg of cod liver oil was used to present 
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Table 2. Composition of experimental diets based on weights and calories 

Diets 
Dietary components 40CO 40SO 40CC 40SC lOCO 

(% weight) 

Coconut oil^ 20. 5 0 20.0 0 4.0 

Safflower oil^ 0. 6 21. 1 0.6 20.6 0.5 

Cholesterol^ 0 0 0.5 0.5 0 

Casein, vitamin free 22. 0 22. 0 22.0 22.0 22.0 

Nonnutritive fiber (cellulose)^ 3. 0 3. 0 3.0 3.0 3.0 

DL-methionine ̂ 0. 3 0. 3 0.3 0.3 0.3 

Corn starch® 50. 1 50. 1 50.1 50.1 66.7 

Salt mix^ (William & Briggs) 3. 5 3. 5 3.5 3.5 3.5 

Kcal/100 Kcal 

Fat 40. 3 40. 3 40.3 40.3 10.2 

Casein 18. 2 18. 2 18.2 18.2 22.5 

Corn starch 41. 5 41. 5 41.5 41.5 67.3 

^Teklad Test Diets, Madison, Wisconsin. 

^Pacific Vegetable Oil Corp., Richmond, California (DL-a-tocopherol added as anti­
oxidant at 0.1% by weight). 

^J. T. Baker Chemical Co., Phillipsburg, New Jersey. 

^91% protein, Teklad Test Diets, Madison, Wisconsin. 

^Clinton Corn Products, Clinton, Iowa. 

^1.5 g/100 g casein, Teklad Test Diets, Madison, Wisconsin. 
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Table 3. Composition of water-soluble vitamin mixture 

Vitamin dose/rat/day 

Thiamin^ 40 meg 

Riboflavin 60 meg 

Pyridoxine HCl 40 meg 

Ca-pantothenate 100 meg 

Nicotinie acid 500 meg 

Folic acid 8 meg 

Biotin^ 1 meg 

Vitamin B^g^ 0.72 meg 

L-aseorbie acid 1 mg 

Meso-inositol 10 mg 

Para-aminobenzoic acid 10 mg 
(USP XIV, PABA) 

Choline CI 5 mg 

Dextrin to make 500 mg*^ 

^All vitamins obtained from General Biochemicals, Inc., 
Chagrin Falls, Ohio (known as Teklad, Madison, Wisconsin, 
since 1975). 

^Biotin mixture prepared by mixing 1 mg biotin with 99 
mg dextrin. 

^Vitamin B,p in mannitol at 0.1 mg vitamin B,,/100 mg 
of mixture. 

^Teklad, Madison, Wisconsin. 
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85 lU vitamin A and 8.5 lU vitamin D daily. Vitamin prepara­

tions were stored in amber bottles at 4® or -20° depending 

on length of storage. 

Diets were prepared in 15 kg batches. Coconut oil 

was melted (23-28®) and cooled before addition to dietary 

dry ingredients. In experiment 2, cholesterol was dissolved 

in SO or liquid CO prior to addition. Diets were stored at 

4°. 

Termination of experiments 

Groups of rats were killed by cervical dislocation^ on 

a schedule which called for sacrifice of six animals per 

day for eight days at the termination of each experiment. 

Three rats on two different diets were sacrificed during 

a one hour period beginning 30 minutes before the recorded 

time of sacrifice. 

Blood was obtained from the unconscious animal by heart 

puncture. To obtain serum, blood was spun after clotting 

in a clinical centrifuge at 4° and 3000 rpm. To obtain 

plasma for experiment 1, blood was collected in heparinized 

tubes (140 lU Na heparin/ml) and treated like the serum 

samples. Serum or plasma was removed with a Pasteur pipette 

and stored in covered vials at -20° until analysis. 

^Cervical Dislocators, Inc., Wausau, Wisconsin. 
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Liver was excised immediately, rinsed in cold distilled 

water, blotted and weighed. Portions were removed for 

enzyme analyses and the remainder wrapped in A1 foil and 

frozen in liquid nitrogen prior to storage at -70®. 

Enzyme Assays 

Assay linearity 

Each enzyme assay was checked for linearity over a 

range of protein concentration and time. Quantities of 

soluble or microsomal protein and the incubation times 

used in each assay are based on the results of these pre­

liminary experiments. 

Centrifugation of liver homogenates 

During preparation of homogenates, samples were centri-

fuged at low speeds in a Sorvall, Model RC2-B centrifuge.^ 

Final centrifugation at 100,000 x g was in a Beckman Model 

2 
L3-50 ultracentrifuge. 

^Sorvall, Inc., Norwalk, Conn. 

2 
Beckman Instruments, Fullerton, Calif. 
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Counting of radioactivity 

Assays for radioactivity were carried out in a Packard 

Tri Carb Model C 2425 scintillation counter^. Samples were 

counted to 1% accuracy. For double label counting, preset 

^^C and channels were used. Spillover of ^^C into the 

channel was less than 0.1%. External and internal 

standardization, using or ^^C-toluene, were used to 

correct for decreased efficiency due to quenching. 

Acetyl-coenzyme A carboxylase 

The activity of ACX was assayed at the time of sacrifice. 

A 4 g portion of liver was minced on a watch glass in ice. 

This material was homogenized in 0.1 M potassium phosphate 

buffer at pH 7.4, containing 0.004 M MgCl2, 0.001 M EDTA 

and 0.01 M 2-mercaptoethanol with seven strokes of a loose-

fitting Potter-Elvehjem homogenizer in an ice bath. The 

volume of buffer was 2 ml per gram of liver. The crude 

homogenate was centrifuged for 10 min at 5000 x g. The super­

natant was removed and recentrifuged for 15 min at 15,000 xg. The 

resulting supernatant suspension was centrifuged for 1 hour at 

100,000xg. After final centrifugation an upper lipid layer 

floated above the soluble protein. Inclusion of lipid in 

^Packard Instrument Co., Downer's Grove, Illinois. 
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the soluble protein was avoided by careful removal of the 

latter by Pasteur pipette. A portion of the final super­

natant was diluted with homogenizing buffer (l->5) and the 

protein concentration determined. Fifty to 80 ul of the 

dilution which contained approximately 100 ug protein was 

used for each ACX assay. 

The assay for ACX was carried out in triplicate as 

described by Craig et al. (1972) and Inoue and Lowenstein 

(1975). An aliquot of the 100,000 xg supernatant solution 

was preincubated at 37° for 30 min in 900 yl preincubation 

solution. This solution contained: Tris-chloride, 50 ymoles; 

dithiothreitol, 1 umole; MgClg, 19 umoles; potassium citrate, 

20 umoles, and bovine serum albumin, "fatty acid free", 

0.5 mg/ml. 

The final solution was at pH 7.5. The carboxylation 

reaction was initiated by adding to the preincubation mixture 

the following; ATP, 2 ymoles; acetyl-CoA, 0.2 ymoles and 

[^^C] NaHCOg^, 10 ymoles (5x10^ dpm). Vials were tightly 

capped after bicarbonate addition. 

Incubations were carried out in a shaking water bath at 

37° for 2 min and terminated in an ice bath by the addition 

with mixing of 200 yl 6N HCl. One-half ml of the acidified 

^New England Nuclear, Boston, Mass. 
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mixture was added to a scintillation vial and evaporated at 

70-80° under N2. Three-tenths ml water and 10 ml Bray's 

solution^ were added to the vial and the sample assayed 

for radioactivity. 

Fatty acid synthetase 

The FAS procedure was essentially that described by 

Craig et al. (1972). On the day of sacrifice a portion of 

soluble protein isolated from the high speed centrifugation 

of the liver homogenate was immediately stored under in 

a screw capped vial at -70°. To assay for FAS activity, the 

protein was removed from storage (within 1 month of animal 

sacrifice) , thawed and diluted (l-»-10) with homogenizing 

buffer. An aliquot containing approximately 100 ug soluble 

protein was used for each assay and samples were run in 

triplicate. One ml of the incubation mixture contained: 

14 1 4 
[1- C]acetyl-CoA , 0.05 ymole (40.5x10 dpm); malonyl-CoA 

0.1 ymole; NADPH, 0.1 ymole; 2-mercaptoethanol, 5 ymoles; 

EDTA, 3 ymoles; potassium phosphate buffer, 100 ymoles at 

pH 6.8. Samples were incubated for 3 min at 37° in a shaking 

water bath. One ml absolute ethanol and 0.2 M 6N HCl were 

added with mixing to terminate each reaction. Product was 

^New England Nuclear, Boston, Mass. 
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extracted with 2 separate 5 ml portions of heptane. The 

extraction solvent was transferred to a scintillation vial, 

and the heptane evaporated under . This procedure extrac­

ted more than 90% of the isotope in the product layer. 

After evaporation of heptane, 10 ml Bray's solution was added 

and the sample assayed for radioactivity. 

Cholesterol 7a-hydroxylase 

The procedure used in this assay was reported by 

Carlson et al. (1978a). Animals were sacrificed by cervical 

dislocation and a 5 g portion of liver was minced on a 

watch glass in ice. This sample was homogenized with 9 strokes 

of a Potter-Elvehjem homogenizer held in an ice bath. The 

homogenizing buffer contained; 100 mM phosphate buffer at 

pH 7.4; 0.25 M sucrose; 0.075 M nicotinamide; 1 mM dithio-

threitol; 2.5 mM EDTA. The volume of buffer was 4 ml per g 

of liver. After homogenization, samples were spun at 

20,000 X g for 15 min. A 10 ml aliquot of the supernatant 

was spun at 100,000 x g for 60 min. The upper layer was 

removed by Pasteur pipette and discarded. The microsomal 

pellet was resuspended in 5 ml homogenizing buffer with 

4 strokes of a hand held homogenizer. This suspension was 

assayed immediately for hydroxylase activity and a portion 

stored in liquid after being layered with N2. 

^Physics Department, Iowa State University. 
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Assays in duplicate contained a final volume of 1.05 

ml including approximately 700 ug microsomal protein, 57 

ymoles potassium phosphate, 6.8 ymoles cysteamine, 4.5 

pmoles MgCl2f 0.64 pmoles NADP^, 2.6 ymoles glucose-6-

phosphate and 0.2 lU glucose-6-phosphate dehydrogenase. 

One hundred ymoles cholesterol were added to each assay 

including [4-^^C] cholesterol^ purified by thin layer 

chromatography on activated silica gel plates. The substrate 

containing solution included 38 yg cholesterol and [4-^^C] 

cholesterol (25x10^ dpm), solubilized with 1.1 mg Tween 80. 

The assay tubes at pH 7.4 excluding the NADPH generating 

system were incubated for 10 min at 0°. The NADPH generating 

system was added. Samples were incubated at 37° for 30 min 

in a shaker bath. The reaction tubes were transferred to 

an ice bath and the reaction stopped by the addition of 10 

ml 95% ethanol. This mixture was extracted twice with 20 

ml portions of pet ether (B.P. 30-65°). 

The samples were evaporated to dryness under N2 and re-

suspended in 100 yl benzene and 25 yl methanol. This sus­

pension and 7a-hydroxycholesterol and cholesterol solutions 

were spotted under N2 on separate channels of activated 

silica gel plates. The chromatograms were developed in 

benzene/ethyl acetate (2:3 v/v). Product was identified by 

^New England Nuclear, Boston, Mass. 
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spraying the plates with 50% H^SO^ and portions containing 

product or substrate were scraped into scintillation vials. 

After the addition of 10 ml Scintisol^ each portion was 

assayed for radioactivity. 

HI'lG-CoA reductase 

This procedure was carried out according to Shapiro 

et al. (1974) and Nordstrom et al. (1977). Microsomal sus­

pensions were used within 6 months of termination of experi­

ment 2. Samples were obtained from storage in liquid nitro­

gen, thawed and each sample assayed in duplicate. Twenty-

five yl, approximately 100 yg protein, was added to 75 yl 

buffer containing 50 mM potassium phosphate at pH 7.5, 

1 mM EDTA, 5 mM dithiothreitol (added just before use) and 

0.3 M KCl. The reaction was initiated by adding 35 yl of 

cofactor solution which contained; 3.6 ymoles EDTA; 4.5 

ymoles glucose-6-phosphate; 0.45 ymoles NADP"*"; 0.3 lU glu-

cose-6-phosphate dehydrogenase; 50 nmoles R,S-[^^3-C] 

2 
HMG-CoA (1.38 Ci/mole). Incubation was at 37° in a shaking 

water bath. Control incubations contained no added reductase. 

After 20 min, reaction was stopped by the addition of 15 yl 

6N HCl to tubes in ice. Ten yl [3R, 4R-4-^H + 3S, 4S-4^H] 

^Isolab, Inc., Akron, Ohio. 
2 New England Nuclear, Boston, Mass. 
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1 4 
mevalonic acid lactone (2.0x10 dpm and 1.8 Ci/mmole) was 

added as an internal standard to each tube and lactonization 

proceeded for 30 min. The 1/2 dram reaction vials were 

centrifuged for 5 min at 2500 x g in the cold to sediment 

protein. One hundred ul supernatant was spotted on activated 

2 
silica gel thin-layer chromatography sheets ruled vertically 

into 3 to 4 channels. Chromatographs were developed in 

benzene-acetone (1:1, v/v) and air dried. The region 

0.6 to 0.9 for each sam.ple was removed by razor blade and 

added to a scintilation vial. Ten ml Bray's solution was 

14 3 
added. The samples were counted for both C and H. Raw 

counts were corrected based on the recovery of [^H] 

mevalonic acid lactone used as an internal standard. 

Tissue Analyses 

Plasma was used in experiment 1, serum in experiments 

2 and 3. 

Cholesterol 

Total serum cholesterol was determined by the method of 

Roeschlau et al. (1974). Serum, standards and blanks were 

treated according to the protocol given in Table 4. 

^Amersham Corp., Arlington Heights, 111. 

2 
Eastman Kodak Co., Rochester, N.Y. 
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Table 4. Cholesterol protocol 

Sample Serum 

(yl) 

HgO 

(yl) 

Standards^ 

(yl) 

Enzyme ^ 
reagent 
(ul) 

Serum 10 - - 500 

Serum blank 10 500 - -

Standards - - 10 500 

Reagent blank - 10 - 500 

^5, 10 or 15 yg cholesterol, recrystallized from 
ethanol in 10 yl isopropanol. 

^Centrifichém, Union Carbide Corp., Rye, N.Y. 

Each sample was mixed for 15 sec, then incubated 

for 15 min at 37° in a shaking water bath. Samples were 

cooled in ice and absorbance read at 520 nm within 90 

. 1 
mm . 

Total and free cholesterol in plasma were determined 

by the method of Allain et al. (1974). The protocol in 

Table 4 was followed. The samples were 20 or 50 ]il plasma 

for total and free cholesterol, respectively. Standards of 

5, 10, 15 or 20 yg recrystallized cholesterol in 20 or 50 

yl isopropanol were used for total or free cholesterol, respec­

tively. Plasma and reagent blanks were run. The enzyme reagents 

for total cholesterol determinations are given in Table 5. 

^Gilford Spectrophotometer 240, Gilford Instrument 
Laboratories, Inc., Oberlin, Ohio. 
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Table 5. Reagents for total and free cholesterol determina­
tions (Allain et al., 1974) 

Eeagent Concentration 
mmoles/liter 

Sodium cholate 

4-Aminoantipyrine 

Phenol 

NagHPO^ 

NaH2P0^ 

Carbowax-6 000 

Cholesterol ester hydrolase 

Cholesterol oxidase 

Horseradish peroxidase 

P^25' 

3.0 

0 . 8 2  

14.0 

50.0 

50.0 

0.17 

33 U/liter 

117 U/liter 

67000 U/liter 

6.70 + 0.10 

Cholesterol ester hydrolase was omitted from the enzyme 

reagent for free cholesterol determinations. 

Samples and appropriate enzyme reagents were treated 

as described under the total serum cholesterol procedure. 

Cholesterol esters were calculated as the difference 

between total and free plasma cholesterol concentrations. 

Free microsomal cholesterol was determined by modifica­

tion of the method of Carlson and Goldfarb (1977). Two 

hundred and fifty yl microsomal homogenate (see section on 

animal treatment) were added to 5 ml CHCl^iCH^OH (2:1 by 
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volume) and mixed for 30 sec. One ml 0.05 M NaCl was 

added and the suspension mixed an additional 30 sec. The 

suspension was centrifuged for 5 min at 1200 x g and the 

top layer removed by suction. Two hundred and fifty yl 

of the lower layer or 250 yl of a chloroform blank and 

10, 15 and 20 yg recrystallized cholesterol in chloroform 

were added to 50 yl Tween 80 reagent (1.0 g Tween 80 in 

20 ml acetone). Solvents were evaporated under and 500 

yl of the enzymatic reagent for free cholesterol were added 

to each tube. The procedure was completed using the direc­

tions given for total serum cholesterol. 

Total liver cholesterol was determined by the method of 

Carlson and Goldfarb (1977). Two hundred mg liver were 

introduced into 5 1/2" screw top tubes; 1 ml 30% KOH in 95% 

ethanol was added. The mixture was saponified at 75® for 

60 min, cooled and 1.5 ml 95% CH^OH added, followed by 20 

ml pet ether (B.P. 30-60°). The tubes were capped and 

centrifuged at 1200xg for 5 min. Three hundred yl of extract 

or 150 yl of standards containing 0, 5, 10, or 15 yg recrystal­

lized cholesterol in pet ether (B.P. 30-60°) were added to 

tubes containing 2.5 yg Tween in 50 yl acetone. The mixture 

was mixed for 15 sec. The solvents were evaporated under 

^2 and 500 yl of cholesterol reagent^ were added to each 

^Centrifichem, Union Carbide Corp., Rye, N.Y. 
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tube. The tubes were vortexed for 15 sec and incubated 

for 30 min at 37*. The assay was completed using the 

procedure described for total serum cholesterol. 

Triglycerides 

Triglycerides were determined by the manual method of 

Giegel et al. (1975). One hundred ul plasma or serum and 

standards containing 50 to 200 ug triolein, dissolved in 

CHClg, were added to 3 ml extraction solvent and mixed 

for 15 sec. Six tenths ml 40 mM HgSO^ was added and the 

tubes again mixed for 15 sec. All tubes were centrifuged 

at 1000 X g at 0-5® for 5 min. One-half ml of the top 

layer was added to a 5 1/2" screw cap tube. The blank was 

set up by adding 0.5 ml extraction solvent to an empty tube. 

One-half ml 100 mM NaOH in isopropanol was added to each 

tube. The tubes were mixed for 15 sec and held 5 min at room 

temperature before 0.5 ml sodium periodate reagent was added. 

The tubes were again mixed for 15 sec and held for 2 min. 

Six ml acetylacetone in ammonium acetate buffer were added, 

the tubes capped, mixed and incubated at 56-58° for 10 

min. The samples were cooled to room temperature and read 

within 1 hour at 415 nm.^ 

^Beckman DU, Beckman Instruments, Fullerton, Calif. 
Modified by a digital readout from Update Instruments, 
Madison, Wisconsin. 
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Free fatty acids 

Plasma free fatty acids were determined by a modifica­

tion of the methods of Saloni and Gardenia (1973) and 

Iiouwerys (1969). Two hundred yl plasma or 25-50 yg palmitic 

acid standard were added to 5 ml extraction solvent and 

mixed for 30 sec. An additional 2 ml H^O and 3 ml heptane 

were added and samples again mixed. The tubes were centri­

fuged at 1200 X g for 10 min. After centrifugation, 3 ml of 

the heptane layer from each tube and 3 ml heptane for a 

blank were transferred to clean tubes. One ml 0.01% thymol 

blue in 70% methanol was added, followed by dropwise addi­

tion of IN NaOH until there was a color change to blue. 

The tubes were mixed for 20 sec and centrifuged for 5 min 

at 1200 X g. The heptane layer was suctioned off and IN HCl 

added until the solution became yellow. Three ml heptane 

were added; the tubes were mixed for 20 sec and centrifuged 

at 1200 X g for 5 min. Two ml of the heptane layer, 2 ml 

of CHClg, and 1 ml of the copper color reagent were added 

to clean test tubes. The mixture was mixed for 20 sec and 

centrifuged at 1200 x g for 5 min. Three ml of the upper 

phase were added to a tube containing 0.25 ml diethyldi-

thiocarbamate dye. Absorbance was read at 440 nm within 1 

hour. 
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Protein 

Protein concentrations were determined by the method of 

Gornall et al. (1949) in the supernatant and in microsomal 

liver fractions obtained after ultracentrifugation by a modi­

fied biuret reaction. To remove interference from -SH con­

taining buffers, aliquots containing 0.5-2.5 g liver protein 

or 0.5-2.5 g bovine serum albumin (standards) in buffer were 

precipitated with 5% TCA (Goodwin and Margolis, 1976). After 

centrifugation for 3 min at 1200 x g, TCA was removed by 

suction. One half ml IN NaOH was added to all tubes which were 

then mixed to dissolve the protein. One hundred yl 5% 

deoxycholate were added to tubes containing microsomal pro­

tein to dissolve the lipid in that fraction. (It was 

necessary occasionally to add 10-50 ul additional deoxy­

cholate to solubilize the lipid). 

Four ml biuret reagent was added to the solubilized super­

natant or microsomal protein and the samples read within 1 

hour at 540 nm. 

Statistical Analysis 

Data were treated statistically by Duncan's multiple 

range test at the 0.05 probability level and the student 

t-test. Duncan's multiple range test was used to compare 

2, 4 or 8 groups of diet and/or time data. For that analysis 
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SEM values were obtained from a pooled mean square error. 

Occasionally data from two individual treatment groups were 

compared by the student t-test.^ Differences between treat­

ments from this analysis have been reported in instances 

when significance occurred at P<.1, indicating trends. 

^Canala calculator. Canon Inc., Tokyo, Japan. 
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RESULTS 

Results have been organized to illustrate the effect 

of time and diet on ACX, FAS, HMG-CoA reductase, cholesterol 

7a-hydroxylase and on selected lipid concentrations. Data 

have also been presented to illustrate the effect of 12 hour 

photoperiods on these parameters. In order to analyze for 

diet effect, mean daily values (MDV) have been calculated for 

various experimental parameters by combining values obtained 

over a 24 hour period in experiments 1 and 3. In experiment 

2, mean combined values (MCV) were obtained by combining 

assay values from 9 a.m. and 9 p.m. An outline of diets, 

feeding periods and sacrifice times as well as the assays 

performed is presented in Figure 2. 

Group means for initial body weights of adult rats 

used in each study were statistically similar by design and 

were similar between studies with an overall range of means 

from 442 g to 465 g. In general, rats fed coconut oil con­

sistently gained more weight than those fed safflower oil 

although the difference in weight gain was not always sig­

nificant. 
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Experiment 1 

The objectives of experiment 1 were to determine: 1) 

whether the activity of ACX and FAS and selected lipid pa­

rameters vary diurnally, 2) whether these variations can be 

correlated, and 3) what effect degree of fat saturation has 

on enzyme activity and tissue lipid concentrations. 

Body and liver weights 

Rats on the CO diet gained an average of 30 g while 

those fed SO lost an average of 14 g (p < 0.05). These dif­

ferences were reflected in the average final body weights, 

497 g and 451 g for rats on the CO and SO diets, respectively 

(p < 0.05, Table 6). Weight losses occurred during the 

last half of the 12 week feeding period so that 50% of 

the animals fed SO and 25% of the animals fed CO eventually 

lost weight. Mean liver weights, 13.3 g and 11.0 g with CO 

and SO feeding, respectively, were also different (p < 0.05, 

Table 6). 

Acetyl-CoA carboxylase 

Time Mean ACX activity (ACX:ACT) was determined 

at 6 hour intervals (Figure 3). Differences in mean activity 

between three of those intervals, 9 p.m., 3 a.m., or 

9 a.m., were not significant. With both diets, however, 

ACX:ACT rose from 3 p.m. to 9 p.m. (p < 0.05, Table 7). The 
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Table 6. Effect of dietary fat on selected body parameters (experiments 1, 2 and 3) 

Diet 

Final 
body 
weight 

( g )  

Weight 
gain 

(?) 

Liver 
weight 
(g) 

Liver wt. 
Body wt. 

(%) 

Experiment 1 

Experiment 2 

Experiment 3 

40CO 497 + 8 (24) 
40SO 451 + 8 (24)^ 

40CO 469 + 11 (11)' 
40CC 452 + 10 (14)' 

40SO 468 + 11 (11)' 
40SC 451 + 10 (14)' 

loco 490 + 7 (24)' 
40CO 494 + 7 (24)' 

a,l 
30 + 7 
-14 + 7 

(24)! 
(24) 

10 + 11 (11) 
1 0 + 9  ( 1 4 ) '  

7 + 11 (11)' 
6 + 9  ( 1 4 ) '  

48 + 4 (24): 
3 5 + 4  ( 2 4 )  

13.3 + 0.3 
11.0 + 0.3 

(24): 
(24) 

14.6 + 0.6 (14)| 
12.5 + 0.6 (11) 

16.2 + 0.6 (14)! 
11.6 + 0.6 (11)* 

14.4 +0.3 (24)' 
14.2 + 0.3 (24)' 

3.1^ 
2.8^ 

:::: 

2.9! 
2.9= 

^Mean 4^ SEM (number of rats), means not followed by the same superscript are significantly 
different (p < 0.05) by Duncan's multiple range test. 
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Figure 3. Activity of acetyl-CoA carboxylase (ACX:ACT) at 
consecutive times. Values are means of 6 rats. 
4 Geo ( ) ; 40SO ( ) . Horizontal dark bar 
indicates duration of dark period from 3 A.M. to 
3 P.M. (experiment 1) 
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Table 7. ACX:ACT^ at consecutive times or photoperiods (experiment 1) 

Time Diet ACX: ;ACT 

TIME 

3 a.m. 
9 a.m. 
3 p.m. 

End light 
Middark 
End dark 

40CO 
40CO 
40CO 

3.34 
3.66 
2.36 

+ 
+ 
+ 

0.39 
0.39 
0.39 

(g)a,b,c,2 

9 p.m. Midlight 40CO 4.38 + 0.39 (6) 

3 a.m. 
9 a.m. 

End light 
Middark 

40SO 
40SO 

2.62 
2.66 

+ 
+ 
0.39 
0.39 

3 p.m. 
9 p.m. 

End dark 
Midlight 

40SO 
40SO 

1.96 
3.62 

+ 
+ 
0.39 
0.39 

PHOTOPERIOD 

9 a.m. ; 3 p.m. Dark 40CO 3.01 + 0.31 (12)^'b 

9 p.m. ; 3 a.m. Light 40CO 3.86 + 0.31 (12)* 

9 a.m. 
9 p.m. 

; 3 p.m. Dark 
; 3 a.m. Light 

40SO 
40SO 

2.31 
3.12 

+ 
+ 
0.31 
0.31 

(12)f/b 
(12)* 

^ACX:ACT nmoles HCO^ fixed/mg protein/min. 

2 
Mean + SEM (number of rats), means not followed by the same superscript are significantly 

different (p < 0.05) by Duncan's multiple range test. 
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increase in enzyme activity in the light period (9 p.m.) 

was comparable on both diets, 86% or 85% for 40CO or 40SO, 

respectively. Similar results were obtained when ACX:ACT 

was based on protein content of whole liver, protein content 

of liver per 100 g body weight or mg protein per ml liver 

homogenate. 

Mean values for ACX:ACT ranged from 2.36 to 4.38 with 

40CO and 1.96 to 3.62 for 40SO. Examination of the data 

over 24 hours precludes the existence of a diurnal rhythm 

in ACX activity similar to the activity evident in HMG-CoA 

reductase (Shefer et al., 1973) or cholesterol 7a-hydroxylase 

(Van Cantfort and Gielen, 1975) . With the photoperiods used 

in this study synchronous (asynchronous) activity between 

ACX and the reductase or hydroxylase would have required 

several fold increases (decreases) in ACX:ACT between 9 a.m. 

and 9 p.m. or 9 p.m. and 9 a.m. Although no diurnal varia­

tions appeared in the activity of this enzyme, the enzyme 

was definitely stimulated during the light period. 

Diet At each 6 hour interval, ACX;ACT was in­

creased by CO versus SO feeding but differences in activity 

due to diet did not reach statistical significance at any 

one time (Table 7). However, when mean daily values (MDV) 

for ACX;ACT were compared, 3.44 or 2.72 with CO or SO, 

respectively, the difference due to diet was significant 



www.manaraa.com

73 

(p < 0.05) with an increase of 24% due to CO versus SO 

(Table 8). 

Fatty acid synthetase 

Time The range of FAS activities (FASrACT) over 

time was narrow (Table 9). Mean values for FAS :ACT at the 

four intervals measured ranged from 0.90 to 1.25 or 0.66 to 

0.96 in the 40CO or 40SO groups, respectively. Activity did 

not vary over 24 hours so that the concept of a diurnal 

rhythm in FAS activity similar to that established for the 

regulatory enzymes of cholesterol synthesis and degradation 

was not supported. 

Diet Mean FAS activity was consistently increased 

with CO compared to SO feeding at each time interval (Table 

9). Again, these differences were statistically significant 

only when MDV were compared (Table 8). Values for activity 

were 1.08 or 0.78 for 40CO or 4OSO, respectively (p < 0.05, 

Table 8). 

Serum cholesterol 

Time Serum mean total, free or esterified cholesterol 

did not vary with time (Table 10). Concentration ranges were 

narrow. For example, total cholesterol values ranged from 

69 to 77 mg/dl or 61 to 70 mg/dl for 40CO or 40SO, respectively 

ly. 
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1 2 
Table 8. Effect of dietary fat on ACXiACT and FAS:ACT (eacperiment 1) 

Diet ACX;ACT FAS;ACT 

40CO 3.44+0.19 (24)*'^ 1.08+0.09 (24)* 
40SO 2-72 + 0.19 (24) 0.78 + 0.09 (24) 

ACX:ACT, nmole HCO^ fixed/mg protein/min. 

2 
FAS:ACT, nmoles fatty acids formed/mg protein/min. 

^Mean ̂  SEM (number of rats), means not followed by the same 
superscript are significantly different (p < 0.05) by Duncan's multiple 
range test. 

Table 9. FAS:ACT 
1) . 

at consecutive times or photoperiods (experiment 

Diet FAS:ACT 

TIME 
3 a.m. 
9 a.m. 
3 p.m. 
9 p.m. 

End light 
Middark 
End dark 
Midlight 

40CO 
40CO 
40CO 
40CO 

1.12 + 0.18 (6) 
1.07 + 0.18 (6) 
0.90 + 0.18 (6) 
1.25 + 0.18 (6)' 

a,b,2 
a,b 
a,b 

3 a.m. 
9 a.m. 
3 p.m. 
9 p.m. 

End light 
Middark 
End dark 
Midlight 

40SO 
4080 
40SO 
40SO 

0.66 + 0.18 (6) 
0.96 + 0.18 (6) 
0.72 + 0.18 (6) 
0.77 + 0.18 (6) 

a,b 
a,b 
a,b 

PHOTOPERIOD 

9 a.m. ; 3 p.m. Dark 40CO 
9 p.m. ; 3 a.m. Light 40CO 

9 a.m. ; 3 p.m. Dark 40SO 
9 p.m. ; 3 a.m. Light40SO 

0.98 + 0.12 (12) 
1.18 + 0.12 (12) 

a,b 

0.84 + 0.12 (12) 
0.72 + 0.12 (12)^ 

a,b 

^FAS:ACT, nmoles fatty acid formed/mg protein/min. 

2 Mean + SEM (number of rats), means not followed by the same super­
script are significantly different (p < 0.05) by Duncsin's multiple 

range test. 
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Table 10. Plasma total cholesterol levels at consecutive times or photoperiods 
(experiment 1) 

Total cholesterol Cholesterol esters Free cholesterol 
(mg/dl) (mg/dl) (mg/dl) 

TIME 
3 a.m. End light 40CO 69 + 5 (6)^'^ 56 + 5 (6)* 13 + 1 (6)3 

9 a.m. Middark 4000 77 + 5 (6)! 63 + 5 (6)* 14 + 1 (6)3 

3 p.m. End dark 40CO 74 + 6 (5)* 60 + 5 (5)* 14 + 1 (5)3 

9 p.m. Midlight 40CO 73 + 5 (6)* 61 + 5 (6)* 12 + 1 (6)3 

3 a.m. End light 40SO 62 + 5 (6)* 49 + 5 (6)* 12 + 1 (6)3 

9 a.m. Middark 40SO 70 + 5 (6)* 55 + 5 (6)3 15 + 1 (6)3 

3 p.m. End dark 40SO 62 + 5 (6)3 50 + 5 (6)3 12 + 1 (6)3 

9 p.m. Midlight 40SO 61 + 5 (6)* 50 + 5 (6)3 11 + 1 (6)3 

PHOTOPERIOD 
9 a.m.; 3 p.m. Dark 40CO 75 4 4 (ID® , 62 + 3 (11)3 14 + 1 (11)3 

9 p.m.; 3 a.m. Light 40CO 71 + 4 (12)3' 58 + 3 (12)3'b 13 + 1 (12)3 

9 a.m.; 3 p.m. Dark 40SO 66 + 4 (12)*'b 53 + 3 14 + 1 (12)3 

9 p.m.; 3 a.m. Light 40SO 61 + 4 (12)* 50 + 3 (12)° 12 + 1 (12)* 

^Mean SEM (number of rats), means not followed by the same superscript are significantly dif­
ferent (p < 0.05) by Duncan's multiple range test. 
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Diet When MVD were compared for CO versus SO feeding, 

total or esterified cholesterol concentrations were both sig­

nificantly increased with the saturated fat (Table 11). Mean 

concentrations over 24 hours were for total cholesterol 73 

or 64 mg/dl and for esterified cholesterol 60 or 51 mg/dl 

for 40CO or 40SO, respectively (p < 0.05). Average ester 

concentrations were 82% or 80% of total cholesterol with CO 

or SO, respectively. Free cholesterol concentrations 

averaged 13 mg/dl and were not affected by diet. 

Serum triglycerides 

Time Initially diets were compared over time by use 

of Duncan's multiple range test which used a pooled mean 

square error term (Table 12). Triglyceride concentrations 

were elevated with 40CO from the start (3 a.m.) to the mid-

dark (9 a.m.) and decreased from the midlight (9 p.m.) to 

the start of the dark period (3 a.m.). The significance of 

changes during these time intervals also became apparent 

when the student t-test was applied to data from 40SO feeding 

(Table 12, Figure 4). 

Diet Triglyceride MDV were higher with CO compared 

to SO with concentrations of 96 or 57 mg/dl, respectively 

(p < 0.05, Table 11). 
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Table 11. Effect of dietary fat on plasma cholesterol, triglyceride and free fatty acid levels 
(experiment 1) 

Diet 
Total 

Cholesterol 
Esters 

(mg/dl) 
Free 

Free fatty acids 
(peq/dll) 

Triglycerides 
(mg/dl) 

40CO 73 + 3 (23)^^2 6 0 + 2  (23 ) J  13 + 0.7 (23)*  50 + 14 (19)* 9 6 + 7  (22 ) *  
40 SO 64 + 3 (24)°  5 1 + 2  (24 )  13 + 0.6 (24)*  89 + 13 (24)° 5 7 + 7  (21 )  

Veq of palmitic acid.. 

2 
Mean SEM (number of rats), means not followed by the same superscript are significantly 

different (p < 0.05) by Duncan's multiple range test. 
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Table 12. Plasma triglyceride levels at consecutive times or photoperiods (experiment 1) 

Duncan's i multipl e range test Student's t-test 
Diet Triglycerides 

(mq/dl) 
Diet Triglycerides 

(mg/dl) 

TIME 
3 a.m. End light 40CO 60 + 13 (6)d,c,l 

TIME 
3 a.m. End light 40CO 60 + 12 (6): *** 

9 a.m. Middark 40CO 121 + 13 (6)^ u 9 a.m. Middark 40CO 121 + 11 (6) 
3 p.m. End dark 40CO 96 + 17 

(6)^ u 
9 a.m. Middark 40CO 121 + 11 (6) 

9 p.m. Midlight 40CO 106 + 13 (6 )* 'b  3 p.m. End dark 40CO 96 + 17 (4) 

3 a.m. End light 40SO 34 + 13 (6)* c d 3 p.m. End dark 40CO 96 + 17 (4) 
9 a.m. Middark 40 SO 74 + 13 (6)b,c,d 

S3)a'b'C,d 

9 P.m. Midlight 40CO 106 ± 24 (6) 
3 p.m. 
9 p.m. 

End dark 
Midlight 

40SO 
40SO 

51 
85 

+ 
+ 

13 
19 

(6)b,c,d 

S3)a'b'C,d 
9 
3 

p.m. 
a.m. 

Midlight 
End light 

8
8
 o
 o
 

106 
60 

+ 24 
+ 12 

(6) 
(4)* 

PHOTOPERIOD 
9 a.m.; 3 p.m. Dark 40CO 

40CO 
111 
83 

+ 12 
11 I:;:'" 

3 
9 

a.m. 
a.m. 

End light 
Middark 

40SO 
40SO 

34 
74 

+ 6 
± 14 

(6) 
(6)** 

J a.m. 
40CO 
40CO 

111 
83 
-

12 
11 I:;:'" 9 a.m. Middark 40S0 74 + 14 (6) 

9 a.m.; 
9 p.m.; 

3 p.m. Dark 
3 a.m. Light 

40SO 
40SO 

62 
51 

+ 
+ 
11 
12 

(12)&'b 

(9 )*  

3 p.m. End dark 40SO 51 ± 9 (6) 
9 a.m.; 
9 p.m.; 

3 p.m. Dark 
3 a.m. Light 

40SO 
40SO 

62 
51 

+ 
+ 
11 
12 

(12)&'b 

(9 )*  3 
9 

p.m. 
p.m. 

End dark 
Midlight 

40SO 
40SO 

51 
85 

+ 9 
+ 22 

(6) 
(3) 

9 p.m. Midlight 40SO 85 + 22 (3) 
3 a.m. End light 40SO 34 + 6 (6)** 

^Mean + SEM (number of rats), means not followed by the same superscript are significantly 

different (p < 0.05) by Duncan's multiple range test. 

^Student t-test; mean + SEM (number of rats); *p<0.1; **p<0.05; ***p<0.01. 



www.manaraa.com

79 

110 

3  A . M .  9  A . M .  3  P . M .  9  P . M .  

T I M E  

3  A . M .  

Figure 4. Serum triglyceride (TG) levels at consecutive 
times. Values are means of 3-6 rats. 40CO 
( ) ; 40SO ( ) . Horizontal dark bar indi­
cates duration of dark period from 3 A.M. to 
3 P.M. (experiment 1) 



www.manaraa.com

80 

Free fatty acids 

Values for SEM were large in this assay. It is not 

possible from the available data to differentiate between 

several factors which could have contributed to the varia­

bility within treatments. The relative size of the S EM 

term may reflect variability in animals, sampling tech­

niques which could not control hydrolysis of fatty acid 

esters, or the assay procedure which required a large num­

ber of sample manipulations. 

Time Mean free fatty acid (FFA) concentrations were 

elevated with 40SO at the beginning (3 p.m.) and six hours 

into the light period (9 p.m.) compared to the beginning 

(3 a.m.) or midpoint of the dark period (9 a.m.). These 

differences were significant (Table 13). Over 24,hours, 

ranges in mean concentrations were, in yeq palmitic acid/dl, 

34 to 67 with CO and 33 to 149 with SO (Table 13). 

Diet With CO feeding compared to SO, MDV for FFA 

were 50 and 89 ueq palmitic acid/dl (p < 0.05, Table 11). 

Free fatty acids were the only serum component which in­

creased in concentration by the substitution of SO for CO. 
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Table 13. Plasma free fatty acid levels at consecutive times or photoperiods 
(experiment 1) 

_. . Free fatty acids 
(Meq/dll) 

TIME 
3 a.m. End light 40CO 34 + 27 (5) 
9 a.m. Middark 40CO 49 + 25 (6) 
3 p.m. End dark 40CO 67 + 36 (3) 
9 p.m. Midlight 40CO 56 + 27 (5) 

3 a.m. End light 40SO 33 + 27 (6) 
9 a.m. Middark 40SO 42 + 25 (6) 
3 p.m. End dark 40SO 149 + 25 (6) 
9 p.m. Midlight 40SO 132 + 25 (6) 

PHOTOPERIOD 
9 a.m.; 3 p.m. Dark 40CO 55 + 24 (9)*_ 
9 p.m.; 3 a.m. Light 40CO 45 + 23 (10) 

9 a.m.; 3 p.m. Dark 40SO 95 + 21 (12)* 
9 p.m.; 3 a.m. Light 40SO 83 + 21 (12) 

^Meq palmitic acid/dl. 

2 
Mean + SEM (number of rats), means not followed by the same superscript are significantly 

different (p < 0.05) by Duncan's multiple range test. 
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Total hepatic cholesterol 

Time Mean hepatic cholesterol concentrations did not 

vary significantly over 24 hours when expressed as mg total 

cholesterol per g wet liver (Table 14). 

Diet Safflower oil fed rats had increased mean 

hepatic cholesterol concentrations compared to rats fed CO 

at each time interval. This dietary difference became 

statistically significant when the groups were compared over 

24 hours. Mean cholesterol concentrations (MDV) were 2.2 

or 2.9 mg/g liver with CO and SO, respectively (p < 0.05) 

(Table 15). 

Soluble protein 

Soluble protein concentrations over 24 hours did not 

differ due to time or diet. The average value was 70.1 

mg/g liver (Table 16). 

Experiment 2 

Diet was the major variable in experiment 2. Four diets 

were fed; 40CO, 40SO and those diets with exogenous cho­

lesterol (0.5% by weight), 40CC and 40SC. Sacrifice time 

was an additional variable. Animals were killed at 2 

times during a 24 hour period, 6 hours after the beginning 

of the dark (9:00 a.m.) or light cycle (9:00 p.m.). These 

times are known to coincide with maxima and minima in the 
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Table 14. Hepatic cholesterol concentrations at consecutive times or photoperiods 
(experiment 1) 

Hepatic cholesterol 
(mg/g liver) 

TIME 

3 a.m. End light 40CO 2.2 + 0.3 (6)^'^ 
9 a.m. 
3 p.m. 
9 p.m. 

Middark 
End dark 
Midlight 

40CO 
40CO 
40CO 

2.3 
2.2 
2.2 

+ 0.3 

± 0-3 
+ 0.3 

3 a.m. 
9 a.m. 
3 p.m. 

End light 
Middark 
End dark 

40SO 
40SO 
40SO 

2.8 
2.5 
2.8 

+ 0.3 
+ 0.3 
+ 0.3 iiiS 

9 p.m. Midlight 40SO 3.3 + 0.3 

PHOTOPERIOD 

9 a.m.; 3 p.m. Dark 40CO 2.2 + 0.2 (12)^ 
9 p.m.; 3 a.m. Light 40CO 2.2 + 0.2 (12)'' 

9 a.m.; 3 p.m. Dark 40S0 2.7 + 0.2 (11)='" 

9 p.m.; 3 a.m. Light 40SO 3.1 + 0.2 (10)* 

^Mean + SEM (number of rats), means not followed by the same superscript are significantly 
different (p < 0.05) by Duncan's multiple range test. 
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Table 15. Effect of dietary fat on hepatic total cholesterol concentrations 
(experiment 1) 

Total cholesterol 
(mg/g liver) (mg/liver) 

40CO 2.2 + 0.1 (24)f/l 2 9 + 2  ( 2 4 ) J  
40SO 2.9 + 0.2 (21)G 3 3 + 2  ( 2 1 ) 3  

^Mean + SEM (number of rats), means not followed by the same superscript are 
significantly different (p < 0.05) by Duncan's multiple range test. 

00 
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Table 16. Effect of time and diet on hepatic soluble protein concentrations (experiments 1 and 3) 

Experiment 1 
Diet Protein 

(mg/g liver) 

Experiment 3 
Diet Protein 

(mg/g liver) 

TIME TIME 
3 a.m. End light 40CO 72 + 2 3 a.m. End light lOCO 80 + 2 (6)* 
9 a.m. Middark 40CO 69 + 2 (G)b'o' 9 a.m. Middark lOCO 80 + 2 (6)* 
3 p.m. End dark 40CO 66 + 2 3 p.m. End dark loco 80 + 2 (6)* 
9 p.m. Midlight 40CO 72 + 2 (6)*'b 9 p.m. Midlight lOCO 77 + 2 (6)* 

3 a.m. End light 40SO 75 + 2 (6)* b 3 a.m. End light 40CO 78 + 2 (6)* 
9 a.m. Middark 40SO 72 + 2 (6)^'^ 9 a.m. Middark 40CO 81 + 2 (6)* 
3 p.m. End dark 40SO 63 + 2 (6)° , 3 p.m. End dark 40CO 80 + 2 (6)* 
9 p.m. Midlight 40SO 72 + 2 (6)*'b 9 p.m. Midlight 40CO 77 + 2 (6)* 

DIET 

40CO 
40SO 

70 
70 

+ 1 
+ 1 

(24 )  
(24)' 

loco 
40CO 

79 + 1 
79 + 1 

(24)' 
(24)' 

Mean + SEM (number of rats), means not followed by the same superscript are significantly 
different (p < 0.05) by Duncan's multiple range test. 
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activity of HMG-CoA reductase and cholesterol 7a-hydroxylase. 

Body and liver weights 

Rats fed CO or SO with and without cholesterol, 

gained on the average 10 or 6 g, respectively. The addi­

tion of cholesterol to either dietary fat caused signifi­

cant increases in average liver weights (p < 0.05, Table 

6). During the final half of this experiment, 25 rats 

on the two SO containing diets, died. At the end of the 

12 week feeding period, rats from each group had lost 

weight: 43 to 45% of the animals fed CO and 27 to 29% 

of those surviving on the SO diets. Although 50% of the 

40SO and 25% of the 40CO rats had lost weight in experiment 

1, no deaths had occurred (see Appendix). 

Acetyl-CoA carboxylase 

Time The activity of ACX within diet groups did not 

vary significantly between the middark and midlight periods, 

although with 40CO increased activity at midlight approached 

significance (0.1 > p > 0.05). This trend was not apparent 

in experiment 1 (Table 17, Table 7). 

Diet The increase in MCV for ACX:ACT (Table 18) 

when 40CO was compared to 40SO, 2.55 or 2.02, respectively, 

approached significance (t= 1.8; 0.1 > p > 0.05). 
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Table 17. Effect of time on ACX:ACT^ (experiment 2) 

Diet ACXîACT 

TIME 
9 a.m. Middark 40CO 2.19 + 0.25 
9 p.m. Midlight 40CO 2.90 + 0.28 

9 a.m. Middark 40CC 1.58 + 0.25 
9 p.m. Midlight 40CC 2.17 + 0.23 

9 a.m. Middark 40SO 1.99 + 0.25 
9 p.m. Midlight 40SO 2.04 + 0.28 

9 a.m. Middark 40SC 1.39 + 0.23 
9 p.m. Midlight 40SC 1.35 + 0.23 

a,b,2 

b,c 
|a,b 

.b,c 
,b,c 

1 
ACX:ACT, nmoles HCO^ fixed/mg protein/min. 

2 
Mean SEM (number of rats), means not followed by the same superscript are significantly 

different (p < 0.05) by Duncan's multiple range test. 
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Table 18. Effect of dietary fat on ACX:ACT^ (experiment 2) 

Diet ACX:ACT 

40CO 2.55 + 0.19 (11)^'^ 
40CC 1.88 + 0.17 (13) 

40SO 2.02 + 0.19 (11)^'^ 
40SC 1.37 + 0.17 (14)C 

1 
ACX;ACT, nmoles HCO^ fixed/mg protein/min. 

2 
Mean +, SEM (number of rats), means not followed by the same superscript are significantly 

different (p < 0.05) by Duncan's multiple range test. 
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Combined values for activity over 24 hours had been 

significantly higher with CO compared to SO in experiment 1. 

However, the sample size averaged 24 per treatment versus 

12 in experiment 2. 

The addition of cholesterol to either diet caused re­

ductions in MCV of 26 or 32% for CO or SO, respectively 

(p < 0.05, Table 18). Additionally, MCV for ACXrACT were 1.88 

or 1-37 for 40CC or 40SC, respectively. This represented a 

significant difference due to fat type (p < 0.05, Table 18). 

HMG-CoA reductase 

Time Mean reductase activity was significantly 

increased in the middark compared to the midlight period 

when CO or SO were fed (Table 19). The differences in values 

between minima and maxima were 9-fold, 151 versus 17, 

with CO but less than double with SO (p < 0.05). 

The time effect was abolished with the addition of 

cholesterol to either fat due to the extensive depression of 

HMG:ACT by cholesterol (Table 19). 

Diet Fat saturation affected reductase activity, 

averaged over 24 hours, significantly (Table 20). The 

substitution of 40SO for 40CO caused a decrease in these 

values to 29 from 68, respectively (p < 0.05). Again, dif­

ferences in reductase activity due to fat disappeared when 

cholesterol was added to the diet. Combined reductase 
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Table 19. Effect of time on HMG:ACT^ (experiment 2) 

Diet HMGtACT 

TIME 
9 a.m. Middark 40CO 151 + 3 (3 ) : /2  
9 p.m. Midlight 40CO 17 ± 2 (5)° 

9 a.m. Middark 40CC 10 + 2 (6)° 

9 p.m. Midlight 40CC 7 ± 2 (5 )C 

9 a.m. Middark 40SO 35 + 2 (5 )c  
9 p.m. Midlight 40SO 21 ± 3 (4 )C 

9 a.m. Middark 40SC 10 + 2 (6)° 

9 p.m. Midlight 40SC 8 ± 2 (5 ) °  

9 a.m. Middark All 38 + 1 (20 )*  
9 p.m. Midlight diets 13 ± 1 (19)* 

^HMG;ACT, pmoles mevalonate/mg protein/min. 

2 
Mean + SEM (number of rats), means not followed by the same superscript are significantly 

different (p < 0.05) by Duncan's multiple range test. 
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1 2 
Table 20. Effect of diet on HMG : ACT and C7a:ACT (experiment 2) 

Diet HMG:ACT C7a;ACT 

40CO 68+2 (8)^'^ 30+4 (11)^'° 
40CC 9+2 (11)^ 49+4 (13)® 

40SO 29+2 (9)^ 21+4 (11)^ 
40SC 8+2 (11)° 37+3 (14) 

^HMG:ACT, pmoles mevalonate/mg protein/min. 

2 
C7a;ACT/ pmoles 7-OH cholesterol/mg protein/min. 

^Mean + SEM (number of rats), means not followed by the same superscript are significantly 
different (p < 0.05) by Duncan's multiple range test. 
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activities were depressed with exogenous cholesterol from 

68 to 9 or from 28 to 9 for CO or SO, respectively, (p < 0.05, 

Table 20). 

Cholesterol 7a-hydroxylase 

Seventy percent of the microsomal bound cholesterol 

has been estimated as accessible to cholesterol 7a-hydroxylase 

by in vitro assay (Van Cant fort and Gielen, 1975). Therefore, 

estimates of cholesterol 7a-hydroxylase activity (C7a:ACT) 

in this work are based on the participation of 70% endogenous 

cholesterol in the enzyme reaction. 

Time 

When analyzed by Duncan's multiple range test with a 

pooled mean square error term, C7a:ACT was increased in 

one instance during the dark compared to the light photoperiod 

(Table 21). However, differences due to time were more appa­

rent when paired sets of data were analyzed by a student 

t-test (Table 21). Maximum C7a : ACT was then significantly 

greater than minimum activity in the case of diet 40CO, 37 

versus 21 (p < 0.01), and diet 40SC,50 versus 25 (p < 0.001). 

When all diets were combined,values for C7a:ACT were 42 

or 28 for the dark and light photoperiods, respectively 

(p < 0.01, Table 21). 
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Table 21. Effect of time on C7Ct:ACT^ (experiment 2) 

2 1 
Diet C7a:ACT C7a:ACT 

TIME 
9 a.m.; Middark 40CO 37 + 5 (6)b'C 37 + 4 (6)* 
9 p.m.; Midlight 40CO 21 + 6 (5)° 21 + 1 (5) 

9 a.m.; Middark 40CC 55 + 7 (7)* 55 + 7 (7) 
9 p.m.; Midlight 40CC 42 + 5 (6)*'b 42 + 6 (6) 

9 a.m.; Middark 40SO 21 + 5 21 + 3 (6) 
9 p.m.; Midlight 40SO 20 + 6 (5)° 20 + 3 (5) 

9 a.m.; Middark 40SC 50 + 5 50 + 7 (7)** 
9 p.m.; Midlight 40SC 25 + 5 (7)° 25 + 4 (7) 

9 a.m.; Middark All 42 + 3 (26)* 42 + 4 (26)** 
9 p.m.; Midlight diets 28 + 3 (23)b 28 + 3 (23) 

^C7a:ACT, pmoles 7-OH cholesterol/mg proteih/miri. 

2 
Mean + SEM (number of rats), means not followed by the same superscript are significantly 

different (p < 0.05) by Duncan's multiple range test. 

^Student t-test, mean + SEM (number of rats); * p < 0.01; **p < 0.001. 
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Diet Enzyme activity was not affected by type of 

dietary fat (Table 20). The addition of cholesterol, 

however, to either fat caused increases in MCV of 65% or 

70% for CO and SO, respectively (p < 0.05, Table 20). With 

cholesterol addition, C7a:ACT was greater with 40CC than 40SC, 

49 versus 37 (p < 0.05, Table 20). 

Plasma cholesterol 

Time Mean cholesterol concentrations did not change 

with photoperiod on any diet (Table 22). Similar results 

had been obtained in experiment 1 when the same time periods 

were considered (Table 10). 

Diet The mean combined cholesterol concentrations 

for CO and SO obtained at 9 a.m. and 9 p.m. failed to indi­

cate any differences in serum concentrations due to fat 

type. This was expected because combined concentrations 

obtained at 9 a.m. and 9 p.m. in experiment 1 also had not 

been different due to fat type. As expected, the addition of 

cholesterol to either dietary fat resulted in significant 

increases in plasma MCV (Table 23). Increases were from 67 

to 84 mg/dl with CO or from 55 to 77 mg/dl with SO (p < 

0.05). Serum cholesterol concentrations were not different 

when cholesterol supplemented fats were compared (Table 23). 
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Table 22. Effect of time on serum cholesterol, serum triglycerides and hepatic microsomal 
free cholesterol (experiment 2) 

Diet 

Serum 
Total 

cholesterol 
(mg/dl) 

Triglyceride 
(mg/dl) 

Hepatic 
free 

cholesterol 
(yg/mg)^ 

TIME 
9 a.m. Middark 40CO 69 + 8 (6)a'^'C'2 140 + 18 (6)* , 23 + 2 
9 p.m. Midlight 40CO 64 + 7 (7)^'b'C 101 + 20 (5)^'b 21 + 2 

9 a.m. Middark 40CC 84 + 8 (6)* 144 + 18 (6)^ . 17 + 1 
9 p.m. Midlight 40CC 83 + 7 (7)* 98 + 17 (7)3,b 21 + 1 

9 a.m. Middark 40SO 58 + 8 (6)b'= 109 + 18 (6)*'b 21 + 2 
9 p.m. Midlight 40SO 50 + 8 (5)° 91 + 20 (5)*'b 26 + 2 

9 a.m. Middark 40SC 79 + 8 (6)^'b 112 + 18 (6)*'% 22 + 1 
9 p.m. Midlight 40SC 75 + 8 (5)^'b 64 + 17 (7)b 26 + 1 

(6) 
(5) 

(7) 
(7) 

(6) 
(5)' 

(7)' 
(7)" 

a,b 

a,b 

a,b 

lig free cholesterol/mg microsome protein. 

2 
Mean + SEM (number of rats), means not followed by the same superscript are significantly 

different (p < 0.05) by Duncan's multiple range test. 
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Table 23. Effect of diet on serum cholesterol, serum triglycerides and hepatic microsomal 
cholesterol (experiment 2) 

Serum Hepatic 
Total free 

cholesterol Triglyceride cholesterol 
(mg/dl) (mg/dl) (Mg/mg) 1 

§
§

 

67+6 (11)^'°'^ 
84+5 (13)* 

122 
119 

+ 13 (11)* 
+ 12 (13)* 

22 
19 1 +

1
 +

 

1 
1 
(11)^'^ 
(14)G 

o
 o
 

CO
 

CO
 

o
 o
 

5 5+6 (11)° 
77+5 (13)*' 

101 
86 

+ 13 (ID* 
+ 12 (13)* 

23 
24 

+
 1 +

 1 
1 

1 
1 
(ID* 
(14)* 

^yg free cholesterol/mg microsomal protein. 

2 
Mean + SEM (number of rats), means not followed by the same superscript are significantly 

different (p < 0.05) by Duncan's multiple range test. 
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Serum triglycerides 

Time Photoperiod had no effect on serum triglyceride 

levels (Table 22). These results confirm observations made 

at 9 a.m. and 9 p.m. with 40CO or 40SO feeding in experiment 

1 (Table 12). 

Diet Degree of fat saturation or addition of 

cholesterol to either diet had no influence on MCV which in 

mg/dl were: 40CO, 122; 40SO, 101; 40CC, 119; 40SC, 86 (Table 

23). When MCV were calculated for 40CO and 40SO at 9 a.m. 

and 9 p.m. in experiment 1, the means also had not been 

affected by type of fat. 

Microsomal cholesterol (free) 

Time Mean free cholesterol concentrations expressed 

as yg cholesterol/mg microsomal protein did not change with 

photoperiod on the unsupplemented diets (Table 22). However, 

with the addition of cholesterol to either fat, higher micro­

somal concentrations in the light period approached sig­

nificance. 

Diet Fat type had no influence on microsomal cho­

lesterol concentrations which were 22 or 23 yg cholesterol 

per mg protein for 40CO or 40SO, respectively (Table 23). 

With addition of cholesterol to either fat, MCV for AQSC 

was greater than that for 40CC (p < 0.05, Table 23). 
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Experiment 3 

The third experiment was designed to determine the 

effect of feeding the same fat (CO) at 10 or 40% of calo­

ries for 4 weeks. The major objective was to determine 

whether variations in the diurnal activity of ACX or FAS 

would be apparent, if enzyme activity would increase, as ex­

pected, with a low-fat, high-carbohydrate diet. A reduced 

feeding period of 4 weeks might also affect ACX or FAS 

activity over 24 hours since changes in the activity of 

lipogenic enzymes had been reported when the feeding period 

was varied (Tsai et al., 1975). The effect of decreased 

fat and increased carbohydrate on serum cholesterol and tri­

glyceride levels was also determined. 

During this experiment, weight losses in individual 

rats did not occur. Weight gains with the high-fat diet 

were 48 g versus 35 g on the low-fat diet (p < 0.05, Table 

6). Final mean liver weights were not different due to 

diet (Table 6). 

Acetyl-CoA carboxylase 

Time Differences in mean acetyl-CoA carboxylase 

activity were not significant over time with either 

diet (Table 24). In contrast, differences in mean 

activity between the start of the light and midlight period 

had been significant in experiment 1 with either 40CO or 
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Table 24. ACX:ACT^ at consecutive time periods or photoperiods (experiment 3) 

Diet ACX:ACT 

TIME 
3 a.m. End light loco 2.22 + 0.27 (6) 
9 a.m. Middark lOCO 1.94 + 0.27 (6) 
3 p.m. End dark loco 2.50 + 0.27 (6) 
9 p.m. Midlight loco 1.86 + 0.27 (6) 

3 a.m. End light 40CO 1.66 + 0.27 (6) 
9 a.m. Middark 40CO 1.36 + 0.27 (6) 
3 p.m. End dark 40CO 1.67 + 0.27 (6) 
9 p.m. Midlight 40CO 1.10 + 0.27 (6) 

a^ b/ 2 
a,b,c 
a 
a,b,c 

a,b,c 
b,c 
a,b,c 
c 

PHOTOPERIOD 
9 a.m.; 
9 p.m.; 

9 a.m.; 
9 p.m.; 

p.m. Dark 
a.m. Light 

3 p.m. Dark 
3 a.m. Light 

loco 
loco 

40CO 
40CO 

2.23 + 0.20 (12)3 
2.04 + 0.20 (12)^' 

1.52 + 0.20 (12) 
1.38 + 0.20 (12)' 

b,c 

^ACXrACT, nmole HCO^ fixed/mg protein/min. 

2 
Mean 4^ SEM (number of rats), means not followed by the same superscript are significantly 

different (p < 0.05) by Duncan's multiple range test. 
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40SO. With 4 0CO, absolute values for ACX activities were 

about one-half those obtained in experiment 1 with the same 

diet. Data from either experiments 1 or 3 do not support 

the existence of a diurnal rhythm in ACX:ACT similar to those 

established for HMG-CoA reductase or cholesterol 7a-

hydroxylase. 

Diet Mean ACX:ACT was elevated at each 6 hour 

interval with lOCO compared to 40CO. Differences due to 

diet, however, were significant only when MDV were compared 

(Table 25). With decreased fat but increased carbohydrate 

intake ACX:ACT increased by 50% (p < 0.05). 

Fatty acid synthetase 

Time Mean FAS activity in group 40CO did not vary 

over time in this experiment, however, with the low-fat, 

high-carbohydrate diet maximum activity occurred midway 

through the light period (Figure 5, p < 0.05). The activity 

of FAS had been stable on either high-fat, low-carbohydrate 

diet in experiment 1. The activity of FAS fell within a 

narrow range with 40CO feeding. The value was 70% of that 

observed with the same diet in experiment 1 (Table 26, 

Table 8). With lOCO, FAS:ACT increased 90% over 24 hours. 
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Table 25. Effect of fat level on hepatic ACXiACT and FAS:ACT and on serum cholesterol and 

triglyceride levels (experiment 3) 

Enzymes Serum 
ACXzACT FAS:ACT Cholesterol 

(mg/dl) 
Triglyceride 

(mg/dl) 

loco 
40CO 

2.13 + 0.14 
1.45 + 0.14 

(24)*'^ 
(24)* 

1.21 + 0.08 
0.75 + 0.08 

79+4 (24)* 
75+4 (24)* 

157 + 9 (24)* 
138 + 9 (24)* 

1 
ACXrACT, nmoles HCO^ fixed/mg protein/min. 

2 
FAS:ACT, nmoles fatty acids formed/mg protein/min. 

^Mean SEM (number of rats), means not followed by the same superscript are significantly 
different (p < 0.05) by Duncan's multiple range test. 
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I 

3  A.M. 9 A.M. 3 P.M. 9 P.M. 3 A.M 

TIME 

Figure 5. Activity of fatty acid synthetase (FAS;ACT) at 
consecutive times. Values are means of 4-6 rats, 
40CO ( ); 10CO( ), Horizontal dark bar 
indicates duration of dark period from 3 A.M. to 
3 P.M. (experiment 3). 
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Table 26. FAS:ACT^ at consecutive time periods or photoperiods (experiment 3) 

Diet FAS:ACT^ 

TIME 
3 a.m. End light loco 0.90 + 0. 16 (6) 
9 a.m. Middark lOCO 1.11 + 0. 20 (4) 
3 p.m. End light loco 1.06 + 0. 16 (6) 
9 p.m. Midlight loco 1.72 + 0. 16 (6) 

3 a.m. End light 40CO 0.87 + 0. 16 (6) 
9 a.m. Middark 40CO 0.62 + 0. 20 (4) 
3 p.m. End dark 40CO 0.62 + 0. 16 (6) 
9 p.m. Midlight 40CO 0.83 + 0. 16 (6) 

PHOTOPERIODS 

9 
9 

a.m. ; 
p.m. ; 

3 
3 
p.m. 
a.m. 

Dark 
Light 

lOCO 
lOCO 

1.31 
1.09 

+ 
+ 
0.13 
0.14 ml*'" 

9 a.m. ; 3 p.m. Dark 40CO 0.85 + 0.13 (12)"'° 
9 p.m. ; 3 a.m. Light 40CO 0.62 + 0.14 (10)° 

^FAS;ACT, nmoles fatty acids formed/mg protein/min. 

2 
Mean SEM (number of rats), means not followed by the same superscript are significantly 

different (p < 0.05) by Duncan's multiple range test. 
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Diet 

Mean FAS activity was elevated at each time period with 

loco compared to 40CO. However, only mean daily values 

for FAS:ACT, 1.21 or 0-75, were significantly different 

(p < 0.05, Table 25) and reflected 62% more activity with 

loco, or decreased fat and increased dietary carbohydrate, 

compared to the 40CO diet. 

Serum cholesterol 

Time Serum cholesterol concentrations did not vary 

due to time in this experiment or in experiment 1 (Table 27, 

Table 10). Concentration ranges were narrow, 65 to 79 

mg/dl or 71 to 90 mg/dl with 40CO or lOCO, respectively. 

Diet Differences in serum cholesterol concentrations 

did not reach statistical significance due to diet. Values 

were 79 or 75 mg/dl for lOCO or 40CO, respectively (Table 

25) , 

Serum triglycerides 

Time Serum triglyceride concentrations at the start 

of the dark period (3 a.m.) represented minima for each diet 

(p < 0.05, Table 28). The lowest mean triglyceride value 

also had appeared at 3 a.m. in experiment 1 with either diet 

(Table 17). In experiment 3, triglyceride ranges were 

102 to 185 mg/dl for 40CO and 71 to 187 mg/dl for lOCO 

(Figure 6). 
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Table 27. Serum cholesterol levels at consecutive times (experiment 3) 

Diet 
Total cholesterol 

(mg/dl) 

TIME 
3 a.m. End light loco 80 + 8 (6)*'l 

9 a.m. Middark loco 71 + 8 (6)* 
3 p.m. End dark loco 77 + 8 (6)* 
9 p.m. Midlight loco 90 + 8 (6)3 

3 a.m. End light 40CO 75 + 8 (6)* 
9 a.m. Middark 40CO 65 + 8 (6)* 
3 p.m. End dark 40CO 76 + 8 (6)* 
3 p.m. Midlight 40CO 79 + 8 (6)* 

Mean SEM (number of rats), means not followed by the same superscript are significantly 
different (p < 0.05) by Duncan's multiple range test. 
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Table 28. Serum triglyceride levels at consecutive times (experiment 3) 

Diet Triglycerides 
(mg/dl) 

TIME 
3 a.m. End light lOCO 71 + 18 (6)°' 

1 
U 

9 a.m. Middark lOCO 148 + 18 (6)*' 
D 

8 p.m. End dark lOCO 145 + 18 (6)3' b 

9 p.m. Midlight lOCO 187 + 18 (6)* 

3 a.m. End light 40CO 102 + 18 (6)b' 
c 

9 a.m. Middark 40CO 185 + 18 (6)* 
3 p.m. End dark 40CO 171 + 18 (6)* 
9 p.m. Midlight 40CO 169 + 18 (6)* 

^Mean + SEM (number of rats), means not followed by the same superscript are significantly 
different (p < 0.05) by Duncan's multiple range test. 
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Figure 6. Serum triglyceride (TG) levels at consecutive 
times. Values are means of 6 rats. 40CO 
( ); 10CO( ). Horizontal dark bar indi­
cates duration of dark period from 3 A.M. to 
3 P.M. (experiment 3) 
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Diet Mean combined triglyceride values were similar 

when loco was substituted for 40CO (Table 25). These means 

were 157 and 138 mg/dl for lOCO or 40CO, respectively. 

Soluble protein 

Soluble protein concentrations did not vary due to time 

or diet. Mean daily values were 79 mg/g liver for both diets 

(Table 16). 

Correlation coefficients 

Correlation coefficients from experiments 1, 2 and 3 

are given in Table 29. These data will be used in the 

discussion. 

Table 29. Correlation coefficients, r, between measurements 
on rats fed various diets (experiments 1, 2 and 3) 

Experiment Diet Correlation n 

1 

1 

1 

3 

3 

FAS-ACX 
40CO 

40SO 

40CO + 
40SO 

40CO 

lOCO + 
40CO 

r; correlation coefficient, 

'p; level of significance, 

'n; number of rats. 

0.53 

0,40 

0.53 

<0.01 

<0.05 

<0.001 

0.57 <0.01 

0.50 <0.001 

24 

24 

48 

22 

44 
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Table 29 (Continued) 

Experiment Diet Correlation r^ n^ 

FAS-TOTAL CHOLESTEROL (SERUM) 

1 40CO 0.53 <0.01 22 

1 40SO 0.41 <0.04 24 

1 40CO + 0.34 <0.02 47 
40SO 

3 lOCO 0.35 <0.02 48 
40CO + 

FAS-CHOLESTEROL ESTERS 
1 40CO 0.31 <0.04 47 

40SO + 

FAS-FREE FATTY ACIDS 
1 40CO -0.35 <0.02 45 

40SO + 

FAS TRIGLYCERIDES 
1 40CO 0.65 <0.001 43 

40SO + 

3 lOCO 0.61 <0.03 20 

ACX-TRIGLYCERIDES 
1 40CO 0.46 <0.01 43 

40SO + 

1 40SO 0.52 <0.01 21 

HMG-CoA RSDUCTASE-CHOLESTEROL 7a-HYDROXYLASE 
2 40CC 0.58 <0.06 12 

HMG-CoA REDUCTASE-TRIGLYCERIDES 
2 40CC 0.62 <0.05 10 

HMG-CoA REDUCTASE-ACX 
2 All 0.30 <0.06 40 

diets 

CHOLESTEROL 7a-HYDROXYLASE-SERUM CHOLESTEROL 
2 All 0.27 <0.07 47 

diets 

CHOLESTEROL 7a-HYDR0XYLASE-HMG-CoA 
2 40SC 0.58 <0.05 14 
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DISCUSSION 

This study was designed to explore whether diurnal 

variations exist in the activities of selected lipogenic 

enzymes and in the concentrations of tissue lipids. These 

parameters and HMG-CoA reductase and cholesterol 7a-

hydroxylase activities were also determined as dietary fat, 

cholesterol, feeding periods or age of rats were changed. 

Objectives were to identify any recognizable patterns or 

correlations which would clarify interrelationships in lipid 

metabolism. 

Acetyl-CoA Carboxylase and Fatty 
Acid Synthetase 

Diurnal variation 

The metabolic pathways for synthesis of fatty acids, 

cholesterol, ketone bodies or ultimately CO2 with release of 

energy, depend on a supply of precursor acetyl-CoA. Regula­

tion of the supply and dispersal of this precursor is not 

completely understood (Bortz and Steele, 1973; Mayes and 

Topping, 1974; Gibbons and Pullinger, 1979). It was recog­

nized ten years ago that the activities of HMG-CoA reductase 

and cholesterol 7a-hydroxylase vary diurnally (Back et al., 

1969; Gielen et al., 1969). The possibility of synchronous 

or asynchronous rhythms in the activity of these enzymes 

and the enzymes controlling lipid synthesis due to the 
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dispersal of their shared precursor, acetyl-CoA, was 

explored in this study. Mean acetyl-CoA carboxylase and 

fatty acid synthetase activities were compared at 6 hour 

intervals (experiments 1 and 3) to determine whether 

changes would occur smoothly between minima and maxima 

as in HMG-CoA reductase or cholesterol 7a-hydroxylase 

activity. 

The activities of FAS and ACX were highly correlated 

in experiment 1 (r=+0.53; N = 48; p < 0.001) or experiment 3 

(r=+0.35; N = 44; p < 0.02) when considered over 24 hours. 

Additionally/ the results from the present study indicate 

that the activities of FAS or ACX are generally stable when 

measured at six hour intervals over a 24 hour period (Tables 

1, 9, 24, 26). The activity of these enzymes also did 

not differ when observations were divided into equal 

photoperiods co;isisting of a dark, or feeding period, and a 

light period. Martin et al. (1979) and Bruckdorfer et al. 

(1974) have also observed that FAS activity did not change 

between light and dark photoperiods. 

However, an exception to the general stability of FAS on 

high fat diets appeared when a low fat diet was fed for one 

month (experiment 3). A significant elevation in activity 

occurred between the beginning and midpoint of the light 

period with lOCO (Figure 6). Synthetase activity was 

elevated throughout the 24 hour period with the low-fat diet 
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in the experiment. Evidently in conjunction with elevated 

activity, an apparent stimulation of FAS could be detected 

during the period when food is normally not eaten. 

In contrast to the stability of ACX when low or high fat 

diets containing coconut oil were fed for one month (experi­

ment 3), ACX activity was elevated between the start of light 

and midway into the light period when high fat diets were 

fed for 3 months (experiment 1). 

In view of the general stability of ACX on high-fat 

diets, selective stimulation during this interval was sur­

prising. Data from this study cannot identify changes due 

to high-fat intake in the activity of enzymes in other path­

ways utilizing acetyl-CoA. However, De Gasquet et al. (1977) 

observed elevated activity during the middark period, with 

high-versus low-fat diets, of an enzyme concerned with 

ketone body production. It is conceivable that changes in 

ketogenesis or rates of fatty acid oxidation due to high fat 

diets could affect ACX activity. Differences in age of 

rats used in experiments 1 and 3 may also have affected the 

activity of ACX. At the termination of experiments 1 and 3, 

rats were 7 months or 4 months old, respectively. Such dif­

ferences in age have affected the outcome of other studies 

in lipid metabolism (Kimura et al., 1970; Dupont et al., 

1972). 



www.manaraa.com

113 

Several investigators using labelled precursors have 

shown that fatty acid synthesis in mice or rats can vary di-

urnally or is elevated significantly during the period of 

food intake (dark cycle). Initially [l-^^C]acetate was used 

to demonstrate this rhythm (Kimura et al., 1970 Edwards et 

al., 1972; Bortz and Steele, 1973). Recently the raté of in-

3 3 
corporation of H (from HgO) into fatty acids has been used 

to free the analysis of the effect of endogenous carbon 

sources and similar results were found over time (Hems et al., 

1975; Cornish and Cawthorne, 1978). However, the rates of 

certain lipogenic processes have been dissociated from the 

observed activity of enzymes in those processes (Tepperman 

et al., 1968). For example, the rate of fatty acid synthesis 

was reduced by but this acid did not inhibit hepatic 

FAS activity (Clarke et al., 1977). Additionally, FAS 

activity was stable during a 24 hour period while the rate 

of fatty acid synthesis increased during the dark or food 

intake period (Martin et al., 1979). 

The absence of a well-defined cycle in ACX and FAS 

activity over 24 hours observed in this and other work may 

reflect the estimated half-lives of those enzymes, 55-59 hours 

(Nakanishi and Numa, 1970) and about 70 hours (Tweto and Larra-

bee, 1972) for ACX and FAS, respectively. These half-lives 

seem to preclude any sudden changes in enzyme quantity al­

though acute alterations of ACX activity by metabolic 
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effectors are possible (Inoue and Lowenstein, 1972; Lee 

and Kim, 1977). 

Effects of fat composition 

Degree of saturation and chain length of fatty acids 

derived from dietary triglyceride are known to modify 

activity or synthesis of lipogenic enzymes. Generally, ef­

fects of fat composition on hepatic lipogenesis have been 

investigated by measuring the rate of fatty acid synthesis 

from labeled precursors ortiie activity of lipogenic enzymes 

during a variety of nutritional manipulations. In the 

present study the effect of diets containing CO with 3% 

polyunsaturated fat (PUFA) or SO with 75% PUFA was determined 

on the activity of ACX and FAS. 

These oils were chosen, not only because of differences 

in polyunsaturation, but because the coefficient of digesti­

bility of CO is very similar to that of other vegetable 

oils (Deuel, 1955, p. 222). Had fully saturated safflower 

oil been used as a representative saturated fat,'the experi­

ments would have been confounded by incomplete absorption. 

When these fats were fed for 3 months as 40% of calories, 

and SO substituted for CO, mean daily activity of both enzymes 

decreased (Table 8). Reduced ACX activity due to SO feeding 

was also evident in experiment 2 but failed to be statistically 

significant (t = 1.8; 0.05 < p < 0.1) (Table 18). 
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The carboxylation of acetyl-CoA to malonyl-CoA via the 

action of acetyl-CoA carboxylase is of central importance in 

control of long chain fatty acid synthesis. The inhibitory 

effect of free fatty acids or their CoA derivatives on this 

step has been traced to the competition of these substances 

with acetyl-CoA for active enzyme sites (Bortz and Lynen, 

1963). Thus, fatty acids, free or bound to albumin, or 

their acyl-CoA derivatives have inhibited the activity of 

ACX or FAS (Pande and Mead, 1968). In addition, this competi­

tive inhibition was increased with increasing fatty acid chain 

length (Nilsson et al., 1974). Goodridge (1973) has proposed 

that these derivatives may inhibit acetyl-CoA carboxylase 

directly or they may inhibit mitochondrial citrate carrier 

and so reduce the activation of acetyl-CoA carboxylase 

caused by citrate. Free fatty acid concentrations in the 

present study were negatively correlated with FAS activity 

{r=-0.35; N=45; p<0.02), suggesting that fatty acid inhibition 

may have been operative during lipogenesis. 

The degree of fat saturation can also affect regulation 

of fatty acid synthesis. For example, saturated or mono-

unsaturated fatty acids or their methyl esters have been 

ineffective in reducing hepatic FAS or ACX activity, although, 

archidonate, linolenate and linoleats progressively decreased 

the activity of these enzymes (Hartley and Abraham, 1972, 

Musch et al., 1974). The effect of SO after a fat-free, high-
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carbohydrate diet was to reduce the induction of hepatic FAS 

activity compared to CO or methyl oleate (Flick et al., 1977). 

Under these conditions, the rate of enzyme synthesis was re­

duced while the rate of enzyme degradation was increased by 

SO but not by the other fats. It was proposed that SO or a 

metabolite may regulate the transcription or translation of 

FAS messenger RNA. 

The depression in enzyme activity found with 40SO com­

pared to 40CO in our study might be traced to differences in 

fatty acid saturation and/or chain length. Safflower oil con­

tains predominantly polyunsaturated as well as long chain 

fatty acids while fatty acids in CO are predominantly satu­

rated and medium chain length. It is recognized that the 

use of CO and SO containing fatty acids of varying chain 

length added another variable to our study. However, the 

significance of this discrepancy in chain length is not 

clear since investigators have not agreed on the effect of 

this variable on lipogenesis. Reiser et al. (1963) noted a 

depression due to feeding medium chain triglycerides while 

Leveille et al. (1967) failed to find differences in selected 

lipid parameters when coconut or corn oil was fed. 

The response of lipogenic enzymes to different fatty 

acids may depend on the experimental approach. In vitro addi­

tion of either saturated or unsaturated fatty acids to iso­

lated hepatocytes resulted in a decrease in ACX quantity and 
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activity. Phospholipids increased, compared to nonesterified 

fatty acids or triglycerides, during the procedure and may 

have regulated ACX synthesis (Kitajima et al., 1975). 

In experiment 2 the addition of cholesterol to either CO 

or SO resulted in decreases in ACX activity of 26 or 32%, 

respectively. However, 38% more activity was observed when 

cholesterol was added to CO compared to SO (Table 18). In 

other studies, fatty acid synthesis and ACX activity have both 

been depressed when cholesterol and cholic acid were fed 

with 20% corn oil diets (Tsai and Dyer, 1973; Tasi et al., 

1975). In contrast, activity of ACX has been unaffected 

by the addition of 2% cholesterol to a 4% fat diet (Craig 

et al., 1972). 

Apparently, the addition of cholesterol to the diets in 

the present study did not channel more acetyl-CoA through the 

fatty acid synthesizing pathways even though this addition 

reduced the activity of HMG-CoA reductase (Table 20). 

Amount of fat 

As an adjunct to the study of diurnal variations in ACX 

and FAS activities, 10 or 40% of calories were fed from CO as 

part of a month long experiment (experiment 3). Mean daily 

ACX or FAS activities decreased by 32% and 38%, respectively, 

when CO was raised from 10 to 40% of calories (Table 25). 

Similarly, incorporation of labelled acetate into fatty acids 
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had been depressed almost 50% when 40 rather than 10% of 

calories were supplied by SO (Diller and Harvey, 1964). Fatty 

acid synthesis has also been inhibited by increasing amounts 

of corn oil or soybean oil, while the latter depressed the 

activities of FAS and ACX (Carrozza et al., 1979, Triscari 

et al., 1978). 

The compensatory changes in the pathways utilizing 

acetyl-CoA as fat is decreased and carbohydrate increased are 

not clear. Insulin secretion may be increased under these 

circumstances leading to a decrease in the glucagon to insulin 

ratio. Such a decrease is known to alter fatty acid metabolism 

so that synthesis rather than oxidation of fatty acids is 

favored (McGarry et al., 1978). Additionally, lipogenesis 

decreased as fatty acid concentrations were increased during 

liver perfusion although rates of VLDL secretion, cholestero-

genesis or ketogenesis were not altered (Mayes and Topping, 

1974). A study such as this, including measurement of the 

rates of fatty acid oxidation or insulin concentrations as 

fat and carbohydrate are manipulated, would aid in an inter­

pretation of enzyme data similar to those obtained in our 

study. 

It is probable that long-term regulation of lipogenesis 

by amounts of dietary fat occurs through changes in hepatic 

enzyme content rather than through activation or inhibition 

of preformed enzyme (Majerus and Kilburn, 1969). This question 
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cannot be resolved with the data from this study. But as an 

extension of the present experiment, the effect of changing 

dietary fat levels on enzyme content could be followed by 

quantitative precipitation of the enzyme by an appropriate 

antibody preparation. 

HMG-CoA Reductase 

Diurnal rhythm 

HMG-CoA reductase, the rate limiting enzyme in choles-

terogenesis, shows a circadian rhythm with peak activity ap­

proximately six hours into the dark cycle and a minimum about 

12 hours later. In rats, fed ad libitum, the time at which 

peak activity occurs during 24 hours may be shifted by 

adjusting the timing of the light-dark period. However, 

presentation of food or lighting is not the primary stimulus 

for this activity, since the rhythm persists during fasting 

or total darkness (Rodwell et al., 1976). Synthesis of the 

reductase appears to take place continuously with the pos­

sible exception of the period of rapidly decreasing activity 

after the peak. Up to a ten-fold increase in activity has 

been reported between minima and maxima when rats were fed a 

low-fat diet (Shapiro and Rodwell, 1971). 

Evidently stimulation of enzyme activity is partially 

dependent on fat type and amount. Ide et al. (1978) found a 

5-fold increase in reductase activity with coconut oil and a 
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3-fold increase with safflower oil when either fat was fed as 

20% of calories. In the present work, reductase activities 

increased between minima and maxima almost 9-fold with 40CO 

but only 2-fold with 40SO feeding. 

However, when cholesterol was added to either fat in 

experiment 2, diurnal rhythm in reductase activity dis­

appeared (Table 19). Higgins and Rudney (1973) made similar 

observations after short-term cholesterol feeding and noted 

that although diurnal reductase activity was no longer de­

tectable, activity may have been depressed to the limits of 

their assay. Cholesterol feeding seemed to have two effects: 

an immediate inhibition of reductase activity independent of 

protein synthesis, followed by inhibition of protein syn­

thesis. However, the mechanism of these responses is not 

clear. 

Amount and type of fat 

Amount and degree of saturation of dietary fats are 

known to influence the activity of HMG-CoA reductase (Gold-

farb and Pitot, 1972, Ide et al., 1978). Results from the 

present study indicate that the substitution of 40SO for 

40CO over a 12 week period inhibited the activity of the 

reductase 51% (Table 20). However, Ide et al. (1978) who 

fed similar diets for 4 or 3 weeks only, failed to obtain 

differences in mean reductase activities. Results were also 
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not affected by fat type when 20% of calories were supplied 

by SO or tripalmitin (Bochenek and Rodgers, 1978). 

Other investigators have examined the effect of fat 

saturation on in vitro rates of hepatic cholesterogenesis by 

measuring the incorporation of radioactive substrates into 

cholesterol. Generally, feeding PUFA rather than saturated 

fats has resulted in increased cholesterogenesis (Reiser 

et al., 1963; Dupont, 1966). But, in meal-fed rats these 

results were reversed (Triscari et al., 1978). 

The rate of cellular cholesterol synthesis is determined 

by the balance of cholesterol entering the cell to the needs 

of the cell for cholesterol for specialized products. In 

the hepatocyte cholesterogenesis is related to entry of 

chylomicrons containing cholesterol (Nervi et al., 1974) and 

to loss of sterol during lipoprotein synthesis (Goh and 

Heimberg, 1976), bile acid synthesis (Nervi and Dietschy, 

1978) or cholesterol secretion into the bile. 

Perfusion of isolated rat liver with free fatty acids 

(FFA) has shown that the output of triglycerides in VLDL 

was proportional to the number of carbon atoms in saturated 

FFA, but decreased as the number of double bonds increased 

in FFA. Additionally, the rate of cholesterogenesis, estimated 

by HMG-CoA reductase activity, was dependent on the rate of VLDL 

secretion because of the obligatory requirement for cholesterol 

in VLDL (Kohout et al., 1971; Goh and Heimberg, 1976). Based 
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on these data, the inhibition of HMG-CoA reductase by PUPA 

found in the present study might be attributable indirectly 

to depression of VLDL synthesis by PUFA derived from dietary 

triglycerides. 

Regulation of reductase activity occurs through altera­

tions in the amount of enzyme protein and possibly by modifi­

cation of its catalytic efficiency (Nordstrom et al., 1977). 

Effects of fat saturation on these parameters have not been 

determined. 

However, an increase in the concentration of microsomal 

cholesterol esters has been negatively correlated with the 

activity of HMG-CoA reductase (Harry et al., 1973; Edwards 

and Gould, 1974; Ide et al., 1978). Apparently, increased 

ester formation suppressed cholesterogenesis by end product 

inhibition of the reductase (Edwards and Gould, 1974). 

Polyunsaturated, rather than saturated, fats have increased 

hepatic ester accumulation (Kellogg, 1974). It is possible 

that ester concentrations also increase in the microsomes 

with PUFA feeding. A determination of microsomal ester con­

centrations would have been helpful in explaining reductase 

inhibition by SO in experiment 2. 

In experiment 2, consumption of cholesterol with CO or 

SO for 12 weeks inhibited reductase activity by 87 or 72%, 

respectively (Table 20). Values for activity were so small 

that differences due to fat saturation, apparent before 

cholesterol feeding, had disappeared. Reduction of similar 
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magnitudes have been reported with 1% cholesterol in corn 

oil, safflower oil or tripalmitin diets (Raicht et al., 1975). 

However, Bochenek and Rodgers (1978) found not only an inhibi­

tion of reductase activity but significantly more activity 

remaining when cholesterol was added to a saturated rather 

than unsaturated fat. Rats in that study compared to our 

animals received 1/2 the calories from fat, were rapidly 

growing and were fed for only 4 weeks. These factors may 

have caused elevated reductase activity with the saturated 

fat. 

Cholesterol 7a-hydroxylase 

Diurnal rhythm 

Hydroxylation in the 7a position of cholesterol is the 

major rate limiting step in the biosynthesis of bile acids 

and is catalyzed by cholesterol 7a-hydroxylase. 

The diurnal rhythm, a two to four-fold increase during 

24 hours, of cholesterol 7a-hydroxylase is controlled at the 

level of enzyme synthesis and degradation (Mitropoulous 

et al., 1972). The mechanisms by which external or internal 

stimuli act in maintaining this rhythm are largely unknown. 

As in HMG-CoA reductase the rhythm persists during fasting 

or total darkness (Myant and Mitropoulous, 1977). However, 

if light and dark photoperiods are reversed for at least 

three weeks, the diurnal rhythm in hydroxylase activity and 

cholesterol synthesis can be reversed (Danielsson, 1972). 
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Thus, assay of this activity is made more convenient and 

such a procedure was followed in our study. 

Mean hydroxylase activities were higher in the dark com­

pared to the light photoperiods in each dietary group (Table 

21). Differences between maxima and minima were significant 

when CO was fed (t = 3.1; p < 0.01) or when SO was fed 

with cholesterol (t = 3.8; p < 0.001). However, diurnal varia­

tion when CO was fed with cholesterol only approached signifi­

cance (t = 1.5; 0.2>p>0.1). Variability in enzyme activity 

within an experimental group has been estimated at 25-32% 

(Mitropoulous et al., 1973; Bjôrkhem et al., 1978). Activity 

differences were not observed due to photoperiod in 50% of 

the hydroxylase determinations in another study (Mayer and 

Mayer, 1974). Such variability within treatments may ref/ : c': 

difficulty in fully activating the enzyme under various assay 

conditions. 

Amount and type of fat 

The rate of bile acid synthesis is influenced by the 

magnitude and circulation rate of the bile acid pool (Shefer 

et al., 1973). Although it is difficult to measure magni­

tude and rate of bile circulation, sterol balance studies have 

been used to indicate the effect of dietary changes in this 

system (Kellogg, 1974; Raicht et al., 1975). Results con­

cerning the effect of fat saturation on sterol balance are 
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contradictory. Fecal excretion of bile acids or bile 

acid synthesis have been increased by polyunsaturated fat 

feeding in some studies (McGovern and Quackenbush, 1973a; 

Carlson et al., 1978b) but were unaffected in others 

(Kellogg, 1974; Bochenek and Rodgers, 1978). 

In the present study, the activity of cholesterol 7a-

hydroxylase was not different due to type of fat (Table 

20). Similar conclusions can be drawn from data published 

by O'Brien et al. (1977) and Kritchevsky et al. (1977). 

Conversely, hydroxylase activity was inhibited by corn 

rather than coconut oil while bile acid elimination was 

decreased in another short-term study (Mayer and Mayer, 

1974). However, increased hydroxylase activity was observed 

when saturated or monounsaturated fats, tripalmitin and 

trierucin, rather than triolein or trilinolein, were fed at 

either 6 or 20% fat levels (Bjorkhem et al., 1978). 

Variability in the effect of fat type on hydroxylase 

activity may reflect differences in the assay procedures 

used by different laboratories. 

Depending on the level in the diet or length of feeding, 

dietary cholesterol has not affected or has enhanced 

cholesterol 7a-hydroxylase activity (Mitropoulos et al., 

1973; Shefer et al., 1973). In the present study, the 

addition of 0.5% cholesterol to CO or SO increased hydroxylase 
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activity considerably. Additionally, activity was 31% 

greater with the saturated compared to unsaturated fat 

(Table 20). In contrast, when tallow, rather than CO, was 

used with or without cholesterol and feeding terminated 

after 4 rather than 12 weeks, hydroxylase activities did not 

differ (O'Brien et al., 1977). 

In an extensive study of sterol balance, cholesterol 

feeding: 1) increased cholesterol absorption, 2) inhibited 

cholesterol synthesis and reductase actitivity, 3) enhanced 

conversion of cholesterol to bile acids and hydroxylase 

activity, 4) slightly increased excretion of endogenous neutral 

steroids, and 5) increased liver cholesterol levels (Raicht 

et al., 1975). Our data with cholesterol feeding are limited 

but do confirm a reduction in the activity of HMG-CoA reduc­

tase, as an estimate of reduced hepatic cholesterogenesis, 

as well as an increase in cholesterol 7a-hydroxylase activity, 

as an estimate of increased bile acid synthesis. 

Serum Lipids 

Diurnal variations 

There is evidence that some plasma lipid concentrations 

vary considerably over 24 hours and that these variations are 

related to amount of dietary fat. For example, triglyceride 

(TG) concentrations were lowest in the light period when S 

or 70% of calories were fed from lard (De Gasquet etal.,1977). 

But with 2% fat, concentrations were lowest at the start of the 
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dark photoperiod (Bruckdorfer et al., 1974). In the present 

study TG concentrations were low at the beginning of the 

dark but elevated at the middark period with each diet 

(experiments 1 and 3). In ad libitum fed animals, the 

latter should be a period of alimentation and consequently 

of increased serum TG concentrations from dietary fat. 

Additionally, a decrease was noted from the midlight to the 

beginning of the dark period with high-fat diets in experi­

ment 1. In this period prior to the resumption of feeding, 

reduced serum TG concentrations would be expected. 

Free fatty acid (FFA) concentrations peaked at the end 

of the light period on fat free diets (Bortz and Steele, 

1973) or 6 hours into the light or dark photoperiods with 

lard supplying 70 or 9% of calories, respectively 

(De Gasquet et al., 1977). In the present study FFA concen­

trations were highest at the beginning and 6 hours into the 

light period with SO but did not vary over time with CO 

(Table 13). The increase in the light period may reflect 

increased TG breakdown and release from the adipose while 

feeding ceases. 

Concentrations of total or free cholesterol did not vary 

with time nor did hepatic cholesterol (Table 10). Although 

hepatic cholesterogenesis varies diurnally (Edwards et al., 

1972), serum and liver cholesterol concentrations do not 

appear to respond to this rhythm. Possibly, bile acid syn­

thesis, synchronous with cholesterol synthesis, utilizes the 
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newly synthesized cholesterol. 

Individual serum or tissue lipid concentrations from 

each dietary treatment in experiment 1 and 3 were combined 

depending on the photoperiod of collection. Presumably, these 

combined data reflected concentrations of metabolites available 

to or synthesized by the animal during either a period of 

feeding or inactivity. Results from this type of analysis 

indicated that lipid concentrations did not change with time. 

No attempt was made to identify lipoprotein composition in this 

study. Possibly, shifts in lipid concentrations occurred in 

lipoproteins in response to feeding patterns. 

Type of fat 

Relatively low serum cholesterol concentrations are 

typical for the rat, in contrast to some species including 

man. Feeding studies with cholesterol-free diets conducted 

in this laboratory have demonstrated that cholesterol concen­

trations in the Wistar rat are resistant to change by dietary 

manipulation (Heng, 1977, Carlson et al., 1978b). Yet serum 

cholesterol concentration may be increased in the rat by the 

administration of cholesterol or bile acids (Tsai et al., 

1975). 

In experiment 1, feeding SO instead of CO lowered 

cholesterol and triglyceride but elevated free fatty acid 

concentrations in the serum (Table 11). The change in serum 
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cholesterol due to type of fat was small, amounting to about 

9 mg/dl and could be verified statistically only by combining 

data from all animals fed the same diet. This may explain 

why, with a reduced number of observation periods in experi­

ment 2, serum cholesterol and TG levels were statistically 

not different. 

Degree of dietary fat saturation can modify serum lipid 

concentrations by one of several mechanisms. These include 

changes in: 1) the rate of hepatic lipogenesis or cholestero-

genesis, 2) the rate of secretion or clearance of lipoproteins, 

3) the synthesis of bile acids or excretion of neutral sterols 

or, 4) the redistribution of lipids from serum to other body 

pools. 

It has already been noted that the activities of the 

lipogenic enzymes, ACX and FAS, were significantly depressed 

by feeding SO in place of CO. Since the control of tri­

glyceride synthesis appears to be at the level of fatty acid 

synthesis rather than esterification (Wiegand et al., 1973), 

decreased TG concentrations, associated with SO compared to 

CO, could be due, in part, to decreased lipogenic enzyme 

activity. Support for this association comes from the fact 

that FAS activity and TG concentrations were strongly cor­

related in experiment 1 (r=+0.65; N=43; p<.001) as were ACX 

activity and TG concentrations {r=+0.46; N=43; p<0.01). 

The secretion rate of lipoproteins from the liver may 
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also be dependent on dietary fat saturation. Morris et al. 

(1975) found that the rate of hepatic VLDL-TG secretion was 

greater in rats fed CO compared to SO and correlated with 

TG concentrations in the serum. However, these results may 

be species dependent. In a similar study with gerbils, the 

relative secretion rates of these two fats were reversed 

(Nicolosi et al., 1976). 

In the present study, levels of serum FFA were 

elevated while levels of TG were decreased by SO compared to 

CO (Table 11). These results could reflect increased levels 

of lipoprotein lipase activity associated with PUFA feeding 

(Bagdade et al., 1970; Pawar and Tedwell, 1968). Additionally, 

the activity of this enzyme has been negatively correlated with 

serum TG levels (Persson et al., 1966). 

Spritz and Mishkel (1969) proposed that ingestion of 

polyunsaturated fats leads to lower serum lipid levels be­

cause PUFA in lipoproteins occupy a greater volume than do 

saturated fats. According to this theory, spatial configura­

tions of TG derived from dietary PUFA, compared to saturated 

fats, are altered so that fewer lipid molecules can be accommo­

dated by the apoprotein of VLDL. Support for this hypothesis 

has come from work with primates in which TG concentrations 

were correlated with VLDL protein (Howard, 1979). Very low 

density lipoprotein particles were significantly larger and 

less densely packed and, therefore, TG concentrations 
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lower when primates were fed SO compared to CO. 

Differences in the utilization of linoleate or 

saturated fats may contribute further to the decrease in 

plasma TC concentrations when fats such as SO, containing 

primarily linoleate are fed in place of saturated fats. 

Results from both in vivo and in vitro experiments have 

shown that linoleate was preferentially incorporated into 

phospholipids while saturated fats were diverted into TG 

(Nestel and Steinberg, 1963; Nicolosi et al., 1976). Lino­

leate also appears to be oxidized at a higher rate than satu­

rated fats (Dupont, 1970) which can again be reflected in de­

creased hepatic TG synthesis (Nichman et al., 1967). 

Serum cholesterol concentrations could be modified by 

dietary fat through changes in hepatic cholesterol synthesis 

or degradation. Although reductase activity was depressed 

almost 60% when SO was substituted for CO in experiment 2, 

cholesterol 7a-hydroxylase activity and serum cholesterol 

levels were not affected by fat saturation (Tables 20 and 23). 

Liver cholesterol content, expressed as mg cholesterol/g 

liver, was increased by SO compared to CO in experiment 1 

(Table 15). This increase was accompanied by a decrease in 

serum cholesterol and appears to indicate a shift of cho­

lesterol between body pools due to diet. However, without 

detailed studies of the kinetics of cholesterol movements 

between various body pools, the validity of this assumption 
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cannot be ascertained. 

The effect of dietary cholesterol in elevating levels of 

serum cholesterol in humans and rats is well-documented. 

Therefore, the significant increase in serum cholesterol ob­

tained when 0.5% cholesterol was added to either CO or SO 

was expected (experiment 2, Table 23). 

However, in experiment 2 the type of fat fed with 

cholesterol did not cause a difference in serum cholesterol 

or TG concentrations (Table 23). Similarly the addi­

tion of cholesterol to SO or lard was without effect on 

levels of either of these serum lipids (Frnka and Reiser, 

1974). 

Cholesterol is readily absorbed from fat containing diets 

(Raicht, et al., 1975) but degree of fat saturation does not 

appear to affect absorption (Reiser et al., 1963; McGovern 

and Quackenbush,1973b). This may partially explain why in 

experiment 2 serum cholesterol levels, though increased by 

the inclusion of cholesterol with fat, did not respond to 

changes in degree of fat saturation. 

Feeding cholesterol is known to decrease hepatic HMG-CoA 

reductase activity and cholesterogenesis (Shapiro and Rodwell, 

1972; Higgins and Rudney, 1973). Reductase activity was also 

decreased in the present study when cholesterol was added to 

CO or SO. However, the decrease in endogenous cholesterol 
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synthesis was not reflected in serum levels of cholesterol. 

In experiment 2, a significant increase in hydroxylase 

activity resulted when saturated rather than polyunsaturated 

fats were fed with cholesterol. However, this increased 

hydroxylase activity was not associated with reduced serum 

cholesterol levels. Perhaps the addition of cholesterol to 

CO, compared to SO, resulted in decreased stores of hepatic 

cholesterol. This problem could be explored in future work. 

Amount of fat 

Serum lipid concentrations may be affected by quantity 

of dietary fat (Howard, 1979), chemical composition of the 

dietary carbohydrate (Corey et al., 1974) and length of 

feeding period (Narayan et al., 1974). 

In this study, when 10 or 40% of calories were fed 

as CO for one month, serum TG concentrations did not 

respond (Table 25). Data relating TG concentrations to 

increased amounts of dietary fat are contradictory. 

For example, when dietary lard was increased, TG con­

centrations increased likewise (De Gasguet et al., 1977). 

But TG levels fell when the amount of dietary corn oil was 

increased (Narayan et al., 1976). These experiments differed 

from the present study in that lower fat levels were used as 

well as different carbohydrates, both of which could in­

fluence TG levels. 
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Serum cholesterol concentrations were also similar at 

the two fat levels (Table 25) which confirms a report that 

different levels of dietary corn oil did not change serum 

cholesterol concentrations (Narayan et al., 1974; Narayan 

et al., 1976). 

Summary 

Variations in activities of the lipogenic enzymes 

and in concentration of serum lipids during alternating 

photoperiods were not well-defined. Although a diurnal rhythm 

has been confirmed in the activities of HMG-CoA reductase 

and cholesterol 7a-hydroxylase, the activities of the enzymes 

regulating lipogenesis, ACX and FAS did not exhibit similar 

variations. The activity of FAS was stable on high-fat diets 

following 1 or 3 month feeding periods. 

However, when dietary fat was reduced with a concomitant 

increase in carbohydrate, FAS activity was stimulated during 

the postprandial or light period. The activity of ACX was 

stable after a 1 month feeding period in young rats with 

either low- or high-fat diets but was stimulated during the 

nonfeeding period after high-fat diets were fed for 3 

months to adult rats. In contrast, when ACX or FAS activities 

from any experiment were considered, in either the dark or 

light photoperiod, feeding states did not affect enzyme 
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activities. A final integration of these data will be possible 

when additional information is available concerning diurnal 

variations in other parameters which can modify lipogenesis. 

Little is known about the periodicity of such related meta­

bolic processes as fatty acid oxidation, ketogenesis, lipo­

protein synthesis or secretion and changes in hormone levels. 

Variations in dietary fat unsaturation affected enzyme 

activity. The lipogenic enzymes were depressed by feeding 

polyunsaturated compared to saturated fats and this effect 

was reflected in the reduced concentrations of serum tri­

glycerides with PUFA. Similarly HMG-CoA reductase activity 

was reduced by polyunsaturated compared to saturated fats. 

With polyunsaturated fat, serum cholesterol levels were re­

duced. Though this was not at the level of statistical sig­

nificance in experiment 2, it suggests that reductase activity 

measured in the same animal may be related to serum cholesterol 

levels. Even though reductase activity was severely depressed 

with cholesterol feeding, serum cholesterol levels were sig­

nificantly elevated when cholesterol was fed with either 

fat. Evidently exogenous cholesterol absorption more than 

compensated for reduced reductase activity, based on cho­

lesterol concentrations. Cholesterol 7a-hydroxylase activity 

was not affected by variations in fat saturation. This obser­

vation can be related to the similarities in serum cholesterol 

levels with either dietary fat but the addition of cholesterol 
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to either diet stimulated cholesterol 7a-hydroxylase activity 

significantly. Again, serum cholesterol levels were not af­

fected, indicating the importance of absorption of dietary 

cholesterol in cholesterol homeostasis. 

When the amount of fat supplied by CO was decreased 

from 40 to 10% of calories with a corresponding increase 

in dietary carbohydrate, activities of both ACX and FAS 

increased. However, this change was not reflected in in­

creased levels of serum TG or total cholesterol. 
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SUMMARY AND CONCLUSIONS 

This study was designed to explore the activity of 

enzymes regulatory in fatty acid synthesis, acetyl-CoA 

carboxylase and fatty acid synthetase, at intervals 

over a 24 hour period. Another objective was to de­

termine synchronony or asychronony in the activities of the 

lipogenic enzymes to those controlling cholesterol synthesis, 

HMG-CoA reductase, and bile acid synthesis, cholesterol 7a-

hydroxylase, A third objective was to measure concentrations 

of selected plasma or tissue lipids to determine whether 

these lipid levels were correlated with enzyme activity and 

could thereby regulate that activity. Additionally, these 

parameters were examined to determine the effect of food in­

take, i.e., photoperiod. A final objective was to determine 

the consequences of manipulating amount or degree of saturation 

of dietary fat, cholesterol addition or length of feeding 

period on enzyme activities and lipid concentrations. 

Male Wistar rats, 3, 4 or 5 months old, were fed semi-

purified diets in each experiment in this study. High-

fat diets, 40% of calories from CO or SO, with and with­

out cholesterol or a low-fat diet, 10% calories from 

CO, were fed for 1 or 3 months. Photoperiods were main­

tained so that alimentation during the dark period would 

occur beginning at 3 a.m. and end at 3 p.m. The light or 
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postprandial period was set from 3 p.m. to 3 a.m. Animals 

were sacrificed at 6 or 12 hour intervals. Parameters meas­

ured at these times included activities of ACX, FAS, HMG-CoA 

reductase and cholesterol 7a-hydroxylase. Concentrations 

of total and free cholesterol, TG and FFA were measured 

in the serum while total and free microsomal cholesterol 

were measured in the liver. Not all measurements were made 

in all experiments. 

The activities of FAS and ACX were strongly correlated 

when the dietary component was ignored. At 6-hour time 

periods during 24 hours, the activity of FAS was relatively 

stable. The activity of ACX, however, was enhanced midway 

through the light period with either high-fat diet. This stimu­

lation may reflect adaptations in other pathways utilizing 

acetyl-CoA when high-fat diets are fed. Activities of either ACX 

or FAS did not differ between 12 hour periods of light or 

dark. Apparently, enzyme activity did not respond to alimen­

tation during the dark period or inactivity during the light. 

Our observations confirm data in the literature based on meas­

urements of FAS during similar photoperiods. However, increased 

lipogenesis from labelled precursors during alimentation has 

been reported. In general, in our work there was an absence 

of a well-defined cycle of ACX or FAS activity over 24 hours 

similar to that for HMG-CoA reductase or cholesterol 7a-

hydroxylase. 
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The activity of either lipogenic enzyme was depressed by 

feeding polyunsaturated compared to saturated fat throughout 

24 hours. Inhibition of enzyme activity by PUFA was signifi­

cant when mean daily values for enzyme activity were com­

pared. This observation is supported by reports in the 

literature. Inhibition of activity by PUFA may be related 

to differences in degree of unsaturation and/or chain length 

of the fatty acids in SO and CO. 

Serum concentrations of total or esterified cholesterol 

were elevated with saturated fat feeding compared to PUFA in 

the first experiment. Although serum levels of cholesterol 

in rats are relatively resistant to change by dietary manipu­

lation, the extended feeding period for these high-fat diets 

probably led to concentration differences. Serum TG levels 

were also elevated by feeding saturated fats compared to 

PUFA. Serum TG may have been lowered in response to the 

decreased activity of the lipogenic enzymes observed in 

this experiment with PUFA feeding. In the second experiment 

with fewer animals per treatment, this effect of PUFA on the 

activity of the lipogenic enzymes or serum cholesterol and 

TG concentrations could not be verified statistically. 

Free fatty acid serum concentrations were increased with PUFA 

versus saturated fat feeding. This may have been the result 

of higher lipoprotein lipase activities reported by other 

workers with similar feeding regimens. Liver cholesterol 
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concentrations were higher when SO was fed in the place of 

CO, indicative of an inverse relationship between serum 

and liver cholesterol levels. Kinetic data are needed to 

ascertain whether this constitutes a shift of cholesterol 

between serum and liver pools. 

Although photoperiod did not affect enzyme activities, 

some serum lipid concentrations were affected by that 

parameter. For example, concentration of FFA were ele­

vated during the light period when SO was fed possibly re­

flecting an increased rate of adipose catabolism of stored 

TG during the postprandial period. Additionally, TG 

concentrations were depressed prior to alimentation and 

increased during alimentation depending on the influx of 

dietary fats. 

When high-fat diets were fed with or without cholesterol 

in the second experiment, lipid parameters were examined at 

two points assumed to be extremes in the activity of HMG-

CoA reductase and choelsterol 7a-hydroxylase. Although the 

activity of the reductase was increased by feeding CO versus 

SO at each time, this effect was not reflected in serum 

cholesterol concentrations. When cholesterol was added to 

either diet, however, reductase activity was so severely 

depressed that neither a differential effect of fat on 

reductase activity nor the diurnal variation was evident. In 

contrast, the type of fat did not affect cholesterol 7a-
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hydroxylase activity. But the addition of cholesterol to 

either fat stimulated the activity of that enzyme. Further­

more, activity was significantly elevated with the CO compared 

to the SO-containing diet. Apparently, the effectiveness of 

cholesterol absorption with either dietary fat more than 

compensates for the enzymatic adaptations under these condi­

tions . 

The activity of ACX was depressed by the addition of 

cholesterol to either PUFA or CO although the enzyme was 

more active when cholesterol was fed with CO. The decreased 

utilization of acetyl-CoA in this pathway did not stimulate 

reductase activity. 

In experiment 3, diets were fed in which calories 

from CO were reduced to give a low-fat, high-carbohydrate 

diet. When fat was fed at 10% rather than 40% of calories, 

the activity of both lipogenic enzymes increased. But 

serum cholesterol and TG concentrations were unaffected 

by dietary fat level. Under these conditions the activity 

of ACX was relatively stable at the 4 periods during 24 hours. 

In contrast, this activity had been enhanced in experiment 1 

on the high-fat diets. Experiment 3 differed from experiment 1 

in that rats were younger and fed for 1 month only. Under 

these conditions, FAS activity responded to decreased 

fat intake and was enhanced at the midlight period. In­

creased lipogenesis would be expected with an increase in 
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dietary carbohydrate. Evidently, the increase was sufficient 

to make detectable an apparent stimulation of the enzyme at 

this point. 
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APPENDIX 

One hundred rats were assigned to 4 diets in experiment 

2. Respiratory difficulties were noted in some of these 

animals as the study progressed. After approximately 7 

weeks, animals from all diet groups had severe diarrhea 

and weight loss. Similar effects were noted simultaneously 

in the stock colony. Rats were given tetracycline (6g/ 

liter distilled H2O) via their drinking water for 2 weeks. 

Most animals regained weight during this treatment which was 

discontinued 3 weeks before sacrifice. 

However, during the final 5 week period of experiment 

2, 25 rats fed either the 40SO or 40SC diets died in 

similar circumstances. First, the ears and eyes of the rats 

became pale, there was blood loss and the animals did not 

eat. Death followed 1 to 4 days after the initial symptoms. 

On autopsy, massive blood clots were found in or around the 

kidneys, epididymides, spleen, anal area, chin or in the 

limbs. Blood clotting time^ was approximately 3 times longer 

in one of these animals compared to a control (stock colony) 

rat. 

When the surviving rats were sacrificed, no internal 

hemorrhaging was evident, although lungs of rats on all 

^Laboratory Animal Resources, School of Veterinary 
Medicine, Iowa State University. 
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diets often had lesions. Evidently, animals on all diets 

survived the respiratory difficulties so that lung infections 

were probably not the cause of blood loss or internal clot 

formation. 

Diet and/or tetracycline administration may be impli­

cated in the early deaths. All diets were checked for oxi­

dative products from unsaturated fatty acids using a 

standard 2-thiobarbituric acid (TBA) test (Tarladgis et al., 

1960).^ No measurable amounts of TBA reactive materials 

were found in the samples. However, in rats fed high PUPA 

compared to saturated fats, an increase was reported in the 

time necessary for formation of a platelet thrombus and a 

decrease in the area of that aggregation (Hornstra, 1971; 

McGregor and Renaud, 1977). Prostaglandin (PGE^) is a 

highly potent inhibitor of thrombocyte adhesion and aggre­

gation. The synthesis of PGE^ was increased in rats fed 

corn oil rather than beef tallow (Hwang et al., 1975) and 

may have been increased in the present study due to the 

highly unsaturated nature of safflower oil. 

One of the effects of tetracycline is to decrease 

synthesis of vitamin K by intestinal bacteria (Krause and 

Mahan, 1979). Possibly a synergistic effect of tetracycline 

and the high PUPA diet led to the prolonged clotting time 

^Dr. Mark Love, Food and Nutrition Dept., Iowa State 
University. 
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and internal clotting which were apparently responsible 

for the early deaths noted in this study. Measurement of 

PGE^ in the serum of these animals would have been useful 

in interpreting these data. 
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